微电子学, 2023, 53 (5): 924, 网络出版: 2024-01-03  

MEMS微波功率传感器的悬臂梁弯曲模型研究

Research on Bending Model of Cantilever Beam for MEMS Microwave Power Sensors
作者单位
南京邮电大学 集成电路科学与工程学院, 南京 210023
摘要
为了研究电容式MEMS微波功率传感器悬臂梁的非线性运动, 建立了MEMS悬臂梁在空间域上的弯曲特性模型, 综合考虑静电力、轴向应力以及残余应力对悬臂梁非线性运动的影响, 求解得到动力学微分方程。在此基础上研究在不同杨氏模量、驱动电压和残余应力下悬臂梁的弯曲特性, 解析得到对应的悬臂梁弯曲特性曲线与轴向应力曲线。使用有限元分析软件ANSYS对不同驱动电压下的悬臂梁下拉位移进行仿真, 并对仿真结果与解析结果进行比较。结果表明, 在驱动电压从10 V到20 V的变化过程中, 仿真结果与模型解析结果具有一致的趋势, 两者间的最大误差仅有8.81%。对电容式MEMS微波功率传感器的悬臂梁弯曲特性的研究具有一定的参考价值和指导意义。
Abstract
In order to study the nonlinear motion of the cantilever beam of capacitive MEMS microwave power sensor, the bending characteristic model of the MEMS cantilever beam in space domain was established. Considering the effects of electrostatic force, axial stress and residual stress on the nonlinear motion of the cantilever beam, a dynamic differential equation was obtained. On this basis, the bending characteristics of the cantilever beam under different Young's modulus, driving voltage and residual stress were studied. And the corresponding bending characteristic curve and axial stress curve of cantilever beam were obtained. Meanwhile, the finite element analysis software ANSYS was used to simulate the pull-down displacement of cantilever beam with different driving voltages, and the simulation results were compared with the analytical results. The results show that when the driving voltage changes from 10 V to 20 V, the simulation results are consistent with the model analysis results, and the maximum error is only 8.81%. Therefore, this work has a certain reference value and guiding significance for the research of cantilever bending characteristics of capacitive MEMS microwave power sensor.
参考文献

[1] NAKARMI B, CHEN H, WON Y H, et al. Microwave frequency generation, switching, and controlling using single-mode FP-LDs [J]. Journal of Lightwave Technology, 2018, 36(19): 4273-4281.

[2] DEHE A, FRICKE N K, KROZER V. Broadband thermoelectric microwave power sensors using GaAs foundry process [C]// 2002 IEEE MTT-S International Microwave Symposium. Seattle, WA, USA. 2002: 1829-1832.

[3] ELDERS J, SPIERING V, WALSH S. Microsystems technology (MST) and MEMS applications: an overview [J]. MRS Bulletin, 2001, 26(4): 312-315.

[4] 李德胜. MEMS技术及其应用 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2002.

[5] 姜岩峰. 微电子机械系统 [J]. 电子工程师, 2006, 60(3): 59-59.

[6] MADNI A M, WAN L A. Microelectromechanical systems (MEMS): an overview of current state-of-the-art [C]// 1998 IEEE Aerospace Conference. New York, NY, USA. 1998: 421-427.

[7] FERNANDEZ L J, WIEGERINK R J, FLOKSTRA J, et al. A capacitive RF power sensor based on MEMS technology [J]. Journal of Micromechanics and Microengineering, 2006, 16(7): 1099.

[8] HAN L, HUANG Q A, LIAO X P. A microwave power sensor based on GaAs MMIC technology [J]. Journal of Micromechanics and Microengineering, 2007, 17(10): 2132.

[9] 蒋明霞, 杨刚, 周易, 等. 基于GaAs MMIC技术的残余应力测试结构的模拟与设计 [J]. 传感技术学报, 2012, 25(7): 897-901.

[10] 王德波, 白文娟, 郭艳艳, 等. 双通道MEMS微波功率传感器的悬臂梁设计 [J]. 微电子学, 2015, 45(3): 408-412.

[11] 谢嘉诚, 左文, 张聪淳, 等. MEMS悬臂梁的静态力学模型研究 [J]. 微电子学, 2020, 50(4): 543-547+554.

[12] REBEIZ G M. RF MEMS 理论·设计·技术 [M]. 黄庆安, 译. 南京: 东南大学出版社, 2005.

[13] LIU C. Foundations of MEMS [M]. Jersey City: Prentice Hall, 2011.

[14] 陈红霞, 刘文光, 方孟翔, 等. 压电悬臂梁振动模糊滑模控制 [J]. 压电与声光, 2022, 44(6): 965-971.

[15] RAMEZANI A, ALASTY A, AKBARI J. Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces [J]. International Journal of Solids and Structures, 2007, 44(14-15): 4925-4941.

王德波, 孙浩宇. MEMS微波功率传感器的悬臂梁弯曲模型研究[J]. 微电子学, 2023, 53(5): 924. WANG Debo, SUN Haoyu. Research on Bending Model of Cantilever Beam for MEMS Microwave Power Sensors[J]. Microelectronics, 2023, 53(5): 924.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!