硅酸盐通报, 2023, 42 (3): 1037, 网络出版: 2023-04-14  

绿色氧化插层体系在石墨膨化剥离中的应用研究进展

Research Progress of Green Oxidation Intercalation System in Graphite Expansion and Stripping
作者单位
郑州大学材料科学与工程学院, 郑州 450001
摘要
氧化插层是目前制备氧化石墨烯(GO)类单层/多层材料的主流方法之一, 其关键步骤为氧化剂和插层剂的选择及工艺的匹配。传统工艺主要采用Hummers法, 存在氮氧化物排放量大、环境危害大、安全性差等问题, 本文综述了近年来氧化插层制备氧化石墨烯的研究进展, 重点阐述了绿色氧化剂、插层剂的研究进展及相应工艺的改良与创新, 系统分析了不同试剂的反应机理及应用效果, 旨在寻找绿色环保、价格低廉、更适合工业化的制备方法。
Abstract
Oxidation intercalation is one of the mainstream methods to prepare graphene oxide (GO) monolayer/multilayer materials. The key steps are oxidation agent and intercalation agent selection and process matching. The traditional process maily uses Hummers method which has problems such as large amount of nitrogen oxide emissions, significant environmental hazards and poor safety. In this paper, the research progress of graphene oxide prepared by oxidation intercalation in recent years was reviewed. The green oxidantion agent, intercalation agent research progress and corresponding process improvement and innovation were emphatically expounded. The reaction mechanism and application effect of different agents were systematically analyzed, aiming to find a green, low-cost and more suitable preparation method for industrial production.
参考文献

[1] VU M C, THI THIEU N A, LIM J H, et al. Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation[J]. Carbon, 2020, 157: 741-749.

[2] LIU Y, DUAN X D, HUANG Y, et al. Two-dimensional transistors beyond graphene and TMDCs[J]. Chemical Society Reviews, 2018, 47(16): 6388-6409.

[3] PARK I J, KIM T I, YOON T, et al. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes[J]. Advanced Functional Materials, 2018, 28(10): 1704435.

[4] EL-KADY M F, SHAO Y L, KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1(7): 16033.

[5] YUAN W Y, ZHANG Y N, CHENG L F, et al. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(23): 8932-8951.

[6] JUSTINO C I L, GOMES A R, FREITAS A C, et al. Graphene based sensors and biosensors[J]. TrAC Trends in Analytical Chemistry, 2017, 91: 53-66.

[7] RIAD K B, HOA S V, WOOD-ADAMS P M. Photocuring graphene oxide liquid crystals for high-strength structural materials[J]. ACS Omega, 2022, 7(24): 21192-21198.

[8] LOH K P, TONG S W, WU J S. Graphene and graphene-like molecules: prospects in solar cells[J]. Journal of the American Chemical Society, 2016, 138(4): 1095-1102.

[9] DING J H, ZHAO H R, JI D, et al. Ultrafast molecular sieving through functionalized graphene membranes[J]. Nanoscale, 2019, 11(9): 3896-3904.

[10] LI X Y, QU J K, XIE H W, et al. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode[J]. Electrochimica Acta, 2020, 332: 135501.

[11] HOU Y G, LV S H, LIU L P, et al. High-quality preparation of graphene oxide via the Hummers’ method: understanding the roles of the intercalator, oxidant, and graphite particle size[J]. Ceramics International, 2020, 46(2): 2392-2402.

[12] CASALLAS CAICEDO F M, VERA LPEZ E, AGARWAL A, et al. Synthesis of graphene oxide from graphite by ball milling[J]. Diamond and Related Materials, 2020, 109: 108064.

[13] ROSILLO-LOPEZ M, SALZMANN C G. Detailed investigation into the preparation of graphene oxide by dichromate oxidation[J]. ChemistrySelect, 2018, 3(24): 6972-6978.

[14] GEBREEGZIABHER G G, ASEMAHEGNE A S, AYELE D W, et al. One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method[J]. Materials Today Chemistry, 2019, 12: 233-239.

[15] BRODIE B C. On the atomic weight of graphite[J]. Proceedings of the Royal Society of London, 1859, 10: 11-12.

[16] STAUDENMAIER L. Verfahren zur darstellung der graphitsure[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1898, 31(2): 1481-1487.

[17] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.

[18] DIMIEV A M, EIGLER S. Graphene oxide: fundamentals and applications[M]. Hoboken: Wiley, 2016.

[19] DIMIEV A M, TOUR J M. Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8(3): 3060-3068.

[20] SEILER S, HALBIG C E, GROTE F, et al. Effect of friction on oxidative graphite intercalation and high-quality graphene formation[J]. Nature Communications, 2018, 9: 836.

[21] HUANG J, ZHAO X, MA C, et al. Preparation of few-layer porous graphene by a soft mechanical method with a short rolling transfer process[J]. ChemPlusChem, 2020, 85(11): 2482-2486.

[22] WANG C, KE F, FAN W, et al. Efficient large-scale preparation of defect-free few-layer graphene using a conjugated ionic liquid as green media and its polyetherimide composite[J]. Composites Science and Technology, 2018, 157: 144-151.

[23] ZHANG Y, XU Y L. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene[J]. Advanced Functional Materials, 2019, 29(37): 1902171.

[24] LIU N, LUO F, WU H X, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525.

[25] 黄全国, 高 华. 一种电化学制备石墨烯用石墨电极及其制备方法: CN202010196130.2[P]. 2020-06-19.

[26] SHARMA V K. Potassium ferrate(VI): an environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6(2): 143-156.

[27] SHARMA V K. Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism[J]. Coordination Chemistry Reviews, 2013, 257(2): 495-510.

[28] MAO W Q, WANG J M, XU Z H, et al. Effects of the oxidation treatment with K2FeO4 on the physical properties and electrochemical performance of a natural graphite as electrode material for lithium ion batteries[J]. Electrochemistry Communications, 2006, 8(8): 1326-1330.

[29] PENG L, XU Z, LIU Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6: 5716.

[30] SOFER Z, LUXA J, JANKOVSK O, et al. Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds: myth or reality?[J]. Angewandte Chemie International Edition, 2016, 55(39): 11965-11969.

[31] YU C, WANG C F, CHEN S. Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 2016, 6: 17071.

[32] YU H T, ZHANG B W, BULIN C K, et al. High-efficient synthesis of graphene oxide based on improved hummers method[J]. Scientific Reports, 2016, 6: 36143.

[33] ZHANG Z Y, XU X C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4[J]. Applied Surface Science, 2015, 346: 520-527.

[34] 侯 波. 石墨插层膨胀剥离制备石墨烯及其导电材料应用研究[D]. 绵阳: 西南科技大学, 2020.

[35] DIMIEV A M, BACHILO S M, SAITO R, et al. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra[J]. ACS Nano, 2012, 6(9): 7842-7849.

[36] LIU Y H, WU X N, TIAN Y X, et al. Largely enhanced oxidation of graphite flakes via ammonium persulfate-assisted gas expansion for the preparation of graphene oxide sheets[J]. Carbon, 2019, 146: 618-626.

[37] ZHENG H, CHENG Y S, ZHAO R R, et al. An improved strategy to synthesize graphite oxide with controllable interlayer spacing as coatings for anticorrosion application[J]. Journal of Applied Polymer Science, 2021, 138(6): 49823.

[38] LIU T, ZHANG R J, ZHANG X S, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547.

[39] 朱 杰, 彭同江, 孙红娟, 等. 化学插层自膨胀法制备膨胀石墨的工艺条件及其性能变化[J]. 化工矿物与加工, 2022, 51(3): 31-35.

[40] KANG F Y, LENG Y, ZHANG T Y. Influences of H2O2 on synthesis of H2SO4-GICs[J]. Journal of Physics and Chemistry of Solids, 1996, 57(6/7/8): 889-892.

[41] 刘玉海, 邹 琴, 潘 群, 等. H2O2氧化制备萝北细鳞片可膨胀石墨研究[J]. 广东建材, 2011, 27(9): 103-105.

[42] HUANG J D, TANG Q Q, LIAO W B, et al. Green preparation of expandable graphite and its application in flame-resistance polymer elastomer[J]. Industrial & Engineering Chemistry Research, 2017, 56(18): 5253-5261.

[43] CHEN X B, TIAN F Y, PERSSON C, et al. Interlayer interactions in graphites[J]. Scientific Reports, 2013, 3: 3046.

[44] DIMIEV A M, CERIOTTI G, BEHABTU N, et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds[J]. ACS Nano, 2013, 7(3): 2773-2780.

[45] 王慎敏, 周 群, 乔英杰. 低硫可膨胀石墨制备新工艺[J]. 应用化学, 2000, 17(1): 93-95.

[46] 王立松. 三氯化铁为插入剂制备膨胀石墨[J]. 炭素, 2004(3): 26-27.

[47] 秦玉春, 王海涛. 可膨胀石墨的制备[J]. 炭素技术, 2002, 21(3): 21-23.

[48] 席改卿, 庞秀言, 王建森, 等. 以磷酸铵为辅助插层剂的可膨胀石墨的制备及其阻燃性能研究[J]. 非金属矿, 2011, 34(5): 18-20+50.

[49] 郭菊仙, 刘又畅, 苏新虹, 等. 插层剂对纳米膨胀石墨片尺寸的影响[J]. 材料科学与工程学报, 2013, 31(6): 840-845.

[50] HU Y, SU M, XIE X, et al. Few-layer graphene oxide with high yield via efficient surfactant-assisted exfoliation of mildly-oxidized graphite[J]. Applied Surface Science, 2019, 494: 1100-1108.

[51] XU C B, WANG H L, YANG W J, et al. Expanded graphite modified by CTAB-KBr/H3PO4 for highly efficient adsorption of dyes[J].Journal of Polymers and the Environment, 2018, 26(3): 1206-1217.

[52] FU W J, KIGGANS J, OVERBURY S H, et al. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound[J]. Chemical Communications, 2011, 47(18): 5265.

[53] NAIR S S, SAHA T, DEY P, et al. Efficiency of different methods of oxidation of graphite: a key route of graphene preparation[J].Graphene and 2D Materials Technologies, 2021, 6(1/2): 1-11.

[54] SHEN J F, HU Y Z, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520.

[55] LIANG H, LI S C, CHEN Y P, et al. Radar attenuation performance of magnetic expanded graphite aerosol obtained from thermal expansion of stage-1 ferrocene graphite intercalation compounds[J]. Materials & Design, 2020, 188: 108436.

[56] TIAN Z M, YU P, LOWE S E, et al. Facile electrochemical approach for the production of graphite oxide with tunable chemistry[J]. Carbon, 2017, 112: 185-191.

[57] WANG H, WEI C, ZHU K Y, et al. Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34456-34466.

[58] LIU J L, POH C K, ZHAN D, et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod[J]. Nano Energy, 2013, 2(3): 377-386.

[59] DAI C L, GU C L, LIU B C, et al. Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs[J]. Journal of Molecular Liquids, 2019, 293: 111535.

[60] ZHAO G, DAI C L, GU C L, et al. Expandable graphite particles as a novel in-depth steam channeling control agent in heavy oil reservoirs[J]. Chemical Engineering Journal, 2019, 368: 668-677.

[61] PANG X Y, TIAN Y, WENG M Q. Preparation of expandable graphite with silicate assistant intercalation and its effect on flame retardancy of ethylene vinyl acetate composite[J]. Polymer Composites, 2015, 36(8): 1407-1416.

[62] ZHANG F S, ZHAO Q, YAN X, et al. Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples[J]. Food Chemistry, 2016, 197: 943-949.

[63] CHUNG D D L. A review of exfoliated graphite[J]. Journal of Materials Science, 2016, 51(1): 554-568.

[64] IBARRA-HERNNDEZ A, VEGA-RIOS A, OSUNA V. Synthesis of graphite oxide with different surface oxygen contents assisted microwave radiation[J]. Nanomaterials, 2018, 8(2): 106.

[65] WU W Y, LIU M J, GU Y, et al. Fast chemical exfoliation of graphite to few-layer graphene with high quality and large size via a two-step microwave-assisted process[J]. Chemical Engineering Journal, 2020, 381: 122592.

[66] SHULGA Y M, BASKAKOV S A, KNERELMAN E I, et al. Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights[J]. RSC Advances, 2014, 4(2): 587-592.

[67] ZHU X J, ZUO L W, WU S L, et al. Porous three-dimensional activated microwave exfoliated graphite oxide as an anode material for lithium ion batteries[J]. RSC Advances, 2016, 6(60): 55176-55181.

王伟杰, 詹明哲, 朱星宇, 刘长春, 吴广鑫, 陈浩, 杨文杰. 绿色氧化插层体系在石墨膨化剥离中的应用研究进展[J]. 硅酸盐通报, 2023, 42(3): 1037. WANG Weijie, ZHAN Mingzhe, ZHU Xingyu, LIU Changchun, WU Guangxin, CHEN Hao, YANG Wenjie. Research Progress of Green Oxidation Intercalation System in Graphite Expansion and Stripping[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 1037.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!