光学学报, 2011, 31 (7): 0726001, 网络出版: 2011-08-10   

银包覆PMMA纳米核壳颗粒的局域表面等离激元共振行为的模拟计算

Simulation on Localized Surface Plasmon Resonance Behaviors of Nanosized PMMA/Ag Core-Shell Structure
李强 1,2,3,*王连洲 1,2,4逯高清 1,2,4黄娆 1,2朱贤方 1,2,4,5
作者单位
1 厦门大学物理系, 福建 厦门 361005
2 厦门大学中国澳大利亚功能纳米材料联合实验室, 福建 厦门 361005
3 新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
4 ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
5 中国科学院固体物理研究所, 安徽 合肥 230031
摘要
应用米氏理论,对银膜包覆PMMA纳米核壳结构的局域表面等离激元共振行为进行了模拟计算,研究了颗粒尺寸、核壳比等参数对纳米核壳结构局域表面等离激元共振消光光谱的影响;同时将其与实心银纳米球的局域表面等离激元共振光谱行为进行了比较。结果表明,相对于实心银纳米球,银膜包覆PMMA纳米核壳结构的共振峰位更加红移,且共振峰的宽度更窄。这些性能上的提高,是由于纳米PMMA介质核的存在减弱了电子云振荡过程中的滞后效应,利于化学生物传感器方面的应用。
Abstract
Localized surface plasmon resonance (LSPR) spectrum behaviors of PMMA/Ag core-shell nanoparticles are extensively and systematically simulated by a calculation method based on Mie theory. Through the simulation calculation, the dependence of the LSPR behaviors of the core-shell nanoparticle on nanoparticle size, ratio of the radius of PMMA core to the thickness of Ag shell, and some other factors is studied. Furthermore, LSPR behaviors of Ag nanoparticles are simulated as well for comparison. The simulation results show that the nanosized PMMA dielectric core can weaken the retardation effects in the process of free electron resonance in the Ag nanoshell. Thus, compared with the LSPR of Ag nanoparticles, the position of the LSPR peak of the PMMA/Ag core-shell nanoparticles has an even more obvious red shift and the width of the LSPR becomes even narrower. Such simulation results indicate that the core-shell nanoparticles would have more advantages over Ag nanoparticles for potential applications of future chemical and biological nanosensors.
参考文献

[1] E. Hutter, J. H. Fendler. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685~1706

[2] F. Caruso. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11~22

[3] 顾铮天, 冯仕猛, 梁培辉 等. 表面等离子体激元共振溶胶凝胶薄膜传感器[J]. 光学学报, 2001, 21(1): 83~87

    Gu Zhengtian, Feng Shimeng, Liang Peihui et al.. Sol-gel film sensor based on surface plasmon resonance[J]. Acta Optica Sinica, 2001, 21(1): 83~87

[4] G. Raschke, S. Brogl, A. S. Susha et al.. Gold nanoshells improve single nanoparticle molecular sensors[J]. Nano Letters, 2004, 4(10): 1853~1857

[5] L. R. Hirsch, J. B. Jackson, A. Lee et al.. A whole blood immunoassay using gold nanoshells[J]. Anal. Chem., 2003, 75(10): 2377~2381

[6] X. Y. Chen, Q. Li, Z. Wu et al.. Simulation on optical properties of gold and silver coated nano coreshell[J]. Advanced Materials Research, 2008, 32: 39~44

[7] Z. H. Chen, Z. Wu, J. J Bao et al.. Improved fabrication of PMMA/Ag core-shell nanostructures with two steps [J]. Advanced Materials Research, 2008, 32: 33~38

[8] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles[M]. New York: Wiley Interscience, 1983

[9] U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters[M]. Berlin: Springer, 1995

[10] C. Mtzler. Matlab Functions for Mie Scattering and Absorption [R]. IAP Research Report, 2002

[11] P. B. Johnson, R. W. Christy. Optical Constants of the Noble Metals [J]. Phys. Rev. B, 1972, 6(12): 4370~4379

[12] TexLoc Web Site. TexLoc Refractive Index of Polymers [OL]. URL: http://www.texloc.com/closet/cl_refractiveindex.html (June 30, 2010)

李强, 王连洲, 逯高清, 黄娆, 朱贤方. 银包覆PMMA纳米核壳颗粒的局域表面等离激元共振行为的模拟计算[J]. 光学学报, 2011, 31(7): 0726001. Li Qiang, Wang Lianzhou, Lu Gaoqing, Huang Yao, Zhu Xianfang. Simulation on Localized Surface Plasmon Resonance Behaviors of Nanosized PMMA/Ag Core-Shell Structure[J]. Acta Optica Sinica, 2011, 31(7): 0726001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!