Journal of Advanced Dielectrics, 2022, 12 (5): 2244006, Published Online: Dec. 5, 2022  

Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramics

Author Affiliations
School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, P. R. China
Abstract
Considering the advantages of high Curie temperature and environment-friendly nature of KNN piezoelectric ceramics, the limitation of weak piezoelectric response and their temperature sensitivity to applications is worth exploring. Herein, the <001> textured (1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)HfO3(x = 0.01−0.045) lead-free ceramics were synthesized by templated grain-growth method. The high piezoelectric performance (d33 of 474 pC/N and strain of 0.21%) and excellent temperature stability (unipolar strain maintained within 4.3% change between 30C and 165C) were simultaneously achieved in the textured KNNS-0.03BNH ceramics. The high piezoelectric performance can be attributed to the summation of the crystallographic anisotropy and phase structure contributions in <001> textured ceramics. The superior temperature stability of piezoelectric properties can be interpreted by the contribution of crystal anisotropy to piezoelectric properties reduces the effect of phase transition on piezoelectric properties deterioration. This study provides an effective strategy for simultaneously achieving high piezoelectric properties and superior temperature stability in KNN-based textured ceramics.

Yan Lin, Ru Wang, Jiawei Qu, Shuo Gao, Yi Zhang, Junli Yan, Jigong Hao, Peng Li, Wei Li. Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2244006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!