Journal of Advanced Dielectrics, 2022, 12 (5): 2244006, Published Online: Dec. 5, 2022  

Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramics

Author Affiliations
School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, P. R. China
Abstract
Considering the advantages of high Curie temperature and environment-friendly nature of KNN piezoelectric ceramics, the limitation of weak piezoelectric response and their temperature sensitivity to applications is worth exploring. Herein, the <001> textured (1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)HfO3(x = 0.01−0.045) lead-free ceramics were synthesized by templated grain-growth method. The high piezoelectric performance (d33 of 474 pC/N and strain of 0.21%) and excellent temperature stability (unipolar strain maintained within 4.3% change between 30C and 165C) were simultaneously achieved in the textured KNNS-0.03BNH ceramics. The high piezoelectric performance can be attributed to the summation of the crystallographic anisotropy and phase structure contributions in <001> textured ceramics. The superior temperature stability of piezoelectric properties can be interpreted by the contribution of crystal anisotropy to piezoelectric properties reduces the effect of phase transition on piezoelectric properties deterioration. This study provides an effective strategy for simultaneously achieving high piezoelectric properties and superior temperature stability in KNN-based textured ceramics.
References

[1] LiuY.,ChangY.,SunE.,LiF.,ZhangS.,YangB.,SunY.,WuJ. andCaoW., Significantly enhanced energy-harvesting performance and superior fatigue-resistant behavior in [001] c-textured BaTiO3-based lead-free piezoceramics, ACS Appl. Mater. Interf.10, 31488(2018).

[2] YangL.,HuangH.,XiZ.,ZhengL.,XuS.,TianG.,ZhaiY.,GuoF.,KongL.,WangY.,LuW.,YuanL.,ZhaoM.,ZhengH. andLiuG., Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals, Nat. Commun.13, 2444(2022).

[3] BianL.,QiX.,LiK.,YuY.,LiuL.,ChangY.,CaoW. andDongS., High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices, Adv. Funct. Mater.30, 2001846(2020).

[4] YangS.,LiJ.,LiuY.,WangM.,QiaoL.,GaoX.,ChangY.,DuH.,XuZ.,ZhangS. andLiF., Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range, Nat. Commun.12, 1414(2021).

[5] KouQ.,YangB.,SunY.,YangS.,LiuL.,XieH.,ChangY.,ZhangS. andLiF., Tetragonal (Ba, Ca) (Zr, Ti)O 3textured ceramics with enhanced piezoelectric response and superior temperature stability, J. Materiomics8, 366(2021).

[6] XuK.,LiJ.,LvX.,WuJ.,ZhangX.,XiaoD. andZhuJ., Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics, Adv. Mater.28, 8519(2016).

[7] FuJ. andZuoR., Structural evidence for the polymorphic phase boundary in (Na,K)NbO3 based perovskites close to the rhombohedral-tetragonal phase coexistence zone, Acta Mater.195, 571(2020).

[8] LiJ. F.,WangK.,ZhuF. Y.,ChengL. Q.,YaoF. Z. andGreenD. J., (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges, J. Am. Ceram. Soc.96, 3677(2013).

[9] LiuX. andTanX., Giant strains in non-textured (Bi1/2Na1/2)TiO 3-based lead-free ceramics, Adv. Mater.28, 574(2016).

[10] LvX.,ZhuJ.,XiaoD.,ZhangX. X. andWuJ., Emerging new phase boundary in potassium sodium-niobate based ceramics, Chem. Soc. Rev.49, 671(2020).

[11] LvX.,ZhangJ.,LiuY.,LiF.,ZhangX. X. andWuJ., Synergetic contributions in phase boundary engineering to the piezoelectricity of potassium sodium niobate lead-free piezoceramics, ACS Appl. Mater. Interf.12, 39455(2020).

[12] WangX.,WuJ.,XiaoD.,ChengX.,ZhengT.,LouX.,ZhangB. andZhuJ., New potassium-sodium niobate ceramics with a giant d33, ACS Appl. Mater. Interf.6, 6177(2014).

[13] YaoW.,ZhangJ.,ZhouC.,LiuD. andSuW., Giant piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain configurations of (K,Na)(Nb,Sb)O3 –BiFeO3–(Bi, Na)ZrO3ceramics, J. Eur. Ceram. Soc.40, 1223(2020).

[14] LvX.,WuJ.,XiaoD.,TaoH.,YuanY.,ZhuJ.,WangX. andLouX., (1-x)(K0.48Na0.52)(Nb0.95−y−zTazSby)O3−xBi0.5(Na0.82K0.18)0.5ZrO3lead-free ceramics: Composition dependence of the phase boundaries and electrical properties, Dalton Trans.44, 4440(2015).

[15] WuJ.,TaoH.,YuanY.,LvX.,WangX. andLouX., Role of antimony in the phase structure and electrical properties of potassium–sodium niobate lead-free ceramics, RSC Adv.5, 14575(2015).

[16] GaoX.,ChengZ.,ChenZ.,LiuY.,MengX.,ZhangX.,WangJ.,GuoQ.,LiB.,SunH.,GuQ.,HaoH.,ShenQ.,WuJ.,LiaoX.,RingerS.P.,LiuH.,ZhangL.,ChenW.,LiF. andZhangS., The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO 3ceramics, Nat. Commun.12, 881(2021).

[17] WuJ.,XiaoD. andZhuJ., Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries, Chem. Rev.115, 2559(2015).

[18] LiuQ.,LiJ. F.,ZhaoL.,ZhangY.,GaoJ.,SunW.,WangK. andLiL., Niobate-based lead-free piezoceramics: A diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients, J. Mater. Chem. C6, 1116(2018).

[19] LiuQ.,ZhangY.,GaoJ.,ZhouZ.,WangH.,WangK.,ZhangX.,LiL. andLiJ. F., High-performance lead-free piezoelectrics with local structural heterogeneity, Energ. Environ. Sci.11, 3531(2018).

[20] LvX.,WuJ.,XiaoD.,ZhuJ. andZhangX., Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics, Acta Mater.140, 79(2017).

[21] MingB. Q.,WangJ. F.,QiP. andZangG. Z., Piezoelectric properties of (Li, Sb, Ta) modified (Na,K)NbO 3lead-free ceramics, J. Appl. Phys.101, 054103(2007).

[22] TaoH.,WuH.,LiuY.,ZhangY.,WuJ.,LiF.,LyuX.,ZhaoC.,XiaoD.,ZhuJ. andPennycookS. J., Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence, J. Am. Chem. Soc.141, 13987(2019).

[23] WadaS.,KakemotoH. andTsurumiT., Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering, Mater. Trans.45, 178(2004).

[24] LiP.,FuZ.,WangF.,HuanY.,ZhouZ.,ZhaiJ.,ShenB. andZhangS., High piezoelectricity and stable output in BaHfO 3and (Bi0.5Na0.5)ZrO3modified (K0.5Na0.5)(Nb0.96Sb0.04)O3textured ceramics, Acta Mater.199, 542(2020).

[25] YangW.,WangY.,LiP.,WuS.,WangF.,ShenB. andZhaiJ., Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation, J. Mater. Chem. C8, 6149(2020).

[26] SaitoY.,TakaoH. andTaniT., Lead-free piezoceramics, Nature432, 84(2004).

[27] LiP.,ZhaiJ.,ShenB.,ZhangS.,LiX.,ZhuF. andZhangX., Ultrahigh piezoelectric properties in textured (K,Na)NbO 3-based lead-free ceramics, Adv. Mater.30, 1705171(2018).

[28] ChangY.,WuJ.,YangB.,XieH.,YangS.,SunY.,ZhangS.,LiF. andCaoW., Large, thermally stabilized and fatigue-resistant piezoelectric strain response in textured relaxor-PbTiO 3ferroelectric ceramics, J. Mater. Chem. C9, 2008(2021).

[29] WangK.,YaoF. Z.,JoW.,GobeljicD.,ShvartsmanV. V.,LupascuD. C.,LiJ. F. andRödelJ., Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv. Funct. Mater.23, 4079(2013).

[30] YaoF. Z.,WangK.,JoW.,WebberK. G.,ComynT. P.,DingJ. X.,XuB.,ChengL. Q.,ZhengM. P.,HouY. D. andLiJ. F., Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics, Adv. Funct. Mater.26, 1217(2016).

Yan Lin, Ru Wang, Jiawei Qu, Shuo Gao, Yi Zhang, Junli Yan, Jigong Hao, Peng Li, Wei Li. Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramics[J]. Journal of Advanced Dielectrics, 2022, 12(5): 2244006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!