光学 精密工程, 2020, 28 (5): 1094, 网络出版: 2020-11-06   

制动主缸补偿孔位置检测误差分析与补偿

Error analysis and compensation in position measurement of brake master cylinder compensation hole
作者单位
长春理工大学, 吉林 长春 130022
摘要
针对当前制动主缸补偿孔检测效率低、精度低、成本高等技术现状, 提出了一种集光、机、电于一体的高性能精密检测系统, 分析了该系统所涉及的补偿孔几何中心位置检测误差并进行补偿。通过对误差来源的分析, 揭示了制动主缸补偿孔位置检测过程的误差解算方法。基于该解算方法, 利用增量式误差补偿方法构建了误差补偿模型, 并进行补偿孔检测与误差补偿实验。实验结果表明, 系统竖轴误差对补偿孔直径检测数据的影响较小, 而对补偿孔位置检测数据的影响则由补偿孔与基准面的相对位置决定。补偿孔与基准面距离越远, 误差越大。实验数据显示, 在型号为ZDZG-2064的被试件中, 被测补偿孔位置精度分别提高0.05 mm和0.254 mm; 在型号为ZDZG-222的被试件中, 被测补偿孔位置精度分别提高0.044 mm和0.072 mm。该误差模型及补偿方法能够有效提高制动主缸补偿孔的检测精度。
Abstract
To address the problems regarding low efficiency, low accuracy, and high cost of brake master cylinder compensation hole measurement, a high-performance precision detection scheme based on optomechatronics was developed. After analyzing the error sources, an equation for error calculation with regard to brake master cylinder compensation hole measurement was derived. The analysis of the position measurement error led to the deduction of an incremental error compensation model, and an experiment was conducted for validation of the model. The experimental results show that the influence of vertical axis error on the measurement data for compensation hole diameter is minimal; however, it has significant influence on the position measurement data. The results show that the position accuracy of the compensation hole in ZDZG-2064 standard part is improved by 0.05 mm and 0.254 mm. For ZDZG-222 standard part, the position accuracy is improved by 0.044 mm and 0.072 mm. The error model and compensation method can effectively improve the position detection accuracy of the brake master cylinder compensation hole.
参考文献

[1] XU Z Q. Talking about the automobile braking system [J]. IOP Conference Series: Materials Science and Engineering, 2017, 274: 012141.

[2] ANTONIO T,ENRICO G, MAURO V, et al.. Passenger car active braking system: pressure control design and experimental results (part Ii) [J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232(5): 786-798.

[3] 高俊鹏, 姜涛, 张桂林, 等. 汽车制动主缸补偿孔形位尺寸检测双远心光学系统研究 [J]. 计量学报, 2017(3): 262-266.

    GAO J P, JIANG T, ZHANG G L, et al.. Research on double telecentric optical system for the form and position detection of automobile brake cylinder compensation hole [J]. Acta Metrologica Sinica, 2017(3): 262-266.(in Chinese)

[4] 董传宇. 汽车液压制动主缸缸体补偿孔检测仪的研究 [D]. 长春: 长春理工大学, 2015.

    DONG CH Y. Research on Compensating Hole Detector of Automobile Hydraulic Break Cylinder [D]. Changchun: Changchun University of Science and Technology. 2015. (in Chinese)

[5] 彭辉. 汽车制动主缸横孔去毛刺机研制 [D]. 长春: 长春理工大学, 2017.

    PENG H. The research on the Transverse Deburring Machine of Automobile Brake Master Cylinder [D]. Changchun: Changchun University of Science and Technology, 2017.(in Chinese)

[6] DURAN O, ALTHOEFER K, SENEVIRATNE L D. Automated pipe defect detection and categorization using camera/laser-based profiler and artificial neural network [J]. IEEE Transactions on Automation Science and Engineering, 2007, 4(1): 118-126.

[7] 鲁少辉. 基于主动式全景视觉的管道内表面缺陷检测技术的研究 [D]. 杭州: 浙江工业大学, 2017.

    LU SH H. Research on defects detection technology of pipe internal surface based on active stereo omnidirectional vision [D]. Hangzhou: Zhejiang University of Technology, 2017.(in Chinese)

[8] 丁超, 唐力伟, 曹立军, 等. 深孔内表面结构光图像几何畸变校正 [J]. 光学 精密工程, 2018,26(10): 2555-2564.

    DING CH, TANG L W, CAO L J, et al.. Geometric distortion correction for structured-light image of deep-hole inner-surface [J]. Opt. Precision Eng., 2018, 26(10): 2555-2564.(in Chinese)

[9] 陈赟, 高胜英, 韩庆阳, 等. 多面体塔差及其安装偏心对光电编码器精度检测的影响 [J]. 光学 精密工程,2019,27(8): 1704-1709.

    CHEN Y, GAO SH Y, HAN Q Y, et al.. Impact of polyhedron pyramidal error and installation eccentricity on precision detection of photoelectric encoder [J]. Opt. Precision Eng., 2019, 27(8): 1704-1709.(in Chinese)

[10] 王宏志. 在线测量技术的误差分析-以汽车制动主缸补偿孔测量为例 [J]. 内燃机与配件, 2017(18): 26-28.

    WANG H ZH. Error analysis of online measurement technology--taking the measurement of compensation shaft of automobile brake master cylinder as an example [J]. Internal Combustion Engine & Parts,2017(18): 26-28. (in Chinese)

[11] 李林, 王晓燕, 钟俊, 等. 微尺度力敏器件力学特性及随机响应抑制研究 [J]. 光学 精密工程, 2019, 27(7): 1561-1568.

    LI L, WANG X Y, ZHONG J, et al.. Study on mechanical properties and random response suppression of micro-scale mechanical-sensitive component [J]. Opt. Precision Eng., 2019, 27(7): 1561-1568.(in Chinese)

[12] GAJRE M N, JEGADEESHWARAN R, SUGUMARAN V, et al.. Vibration based fault diagnosis of automobile hydraulic brake system using fuzzy logic with best first tree rules[J]. International Journal of Vehicle Structures and Systems, 2017, 8(4): 214-218.

姜涛, 张桂林, 高俊鹏. 制动主缸补偿孔位置检测误差分析与补偿[J]. 光学 精密工程, 2020, 28(5): 1094. JIANG Tao, ZHANG Gui-lin, GAO Jun-peng. Error analysis and compensation in position measurement of brake master cylinder compensation hole[J]. Optics and Precision Engineering, 2020, 28(5): 1094.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!