中国激光, 2014, 41 (5): 0502001, 网络出版: 2014-04-18  

半导体激光器空间辐射应力加速寿命实验模型

Accelerated Life Testing Model of Laser Diodes under Space Radiation Stress
作者单位
1 空军工程大学信息与导航学院, 陕西 西安 710077
2 兰州物理研究所, 甘肃 兰州 730000
摘要
通过对半导体激光器在空间环境中辐射损伤机理的分析,得到了器件在辐射条件下的性能退化规律以及辐射过程中的退火规律。在此基础上,建立了辐射应力加速寿命实验模型,获得了故障时间、加速因子、故障概率分布函数、概率密度函数和平均故障前时间的表达式。模拟了三组应力分别为100、50和10 Gy/s情况下器件的性能退化数据,进而对加速寿命实验模型的参数进行了估算,求得器件在0.03 Gy/s的正常应力条件下的故障时间为43862 h。基于威布尔故障分布,利用应力为50 Gy/s的加速试验模拟数据,得到了器件的故障概率分布函数以及平均故障前时间,其平均故障前时间约为39755.8 h。
Abstract
By analyzing the radiation impact mechanism in space ennironment, the irradiated performance degradation and the annealing effect during radiation are achieved. On the basis, accelerated life testing model under radiation stress is established, the expressions of failure time, accelerate factor, cumulative distribution function, probability density function and mean time to failure are obtained. Degradation datas under the stresses of 100, 50 and 10 Gy/s are simulated, and parameters in the accelerated life testing model are estimated. The failure time under normal radiation stress (0.03 Gy/s) is 43862 h. Basing on Weibull distribution and the simulated data under the stress of 50 Gy/s, both cumulative distribution function and mean time to failure of laser diodes are calculated, the mean time to failure is about 39755.8 h.
参考文献

[1] 常国龙. 半导体激光器辐射效应及影响研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2010. 65-72.

    Chang Guolong. The Study of the Influence of Radiation Effect on Laser Diodes[D]. Harbin: Harbin Institute of Technology, 2010. 65-72.

[2] Lu Guoguang, Huang Yun, En Yunfei. Lifetime estimation of high power lasers[C]. SPIE, 2010, 7844: 784413.

[3] 孙孟相, 谭满清, 王鲁峰. 1300 nm超辐射发光二极管寿命测试[J]. 光学学报, 2008, 28(10): 1994-1997.

    Sun Mengxiang, Tan Manqing, Wang Lufeng. Lifetime tests of 1300 nm superluminesent diodes[J]. Acta Optica Sinica, 2008, 28(10): 1994-1997.

[4] Lorenzo Trevisanello, Matteo Meneghini, Maura Pavesi, et al.. Accelerated life test of high brightness light emitting diodes[J]. IEEE Transaction on Device and Materials Reliability, 2008, 8(2): 304-311.

[5] Nicola Trivellin, Matteo Meneghini, Enrico Zanoni, et al.. IEEE International Reliability Physics Symposium, Proceedings, A review on the reliability of GaN-based laser diodes[C]. 2010. IRPS10.

[6] 余菲, 金雷. GaN发光二极管的老化数学模型及寿命测试方法[J]. 中国激光, 2011, 38(8): 0806001.

    Yu Fei, Jin Lei. Mathematical model of aging and the life test method for GaN LED[J]. Chinese J Lasers, 2011, 38(8): 0806001.

[7] 丁颖, 王鲁峰, 赵玲娟, 等. 用于光纤通信的1.55 μm DFB激光器的可靠性分析[J]. 光电子·激光, 2004, 15(4): 393-396.

    Ding Ying, Wang Lufeng, Zhao Lingjuan, et al.. Reliability analysis of 1.55 μm DFB laser diodes for optical fiber communication[J]. Journal of Optoelectronics·Laser, 2004, 15(4): 393-396.

[8] 钱敏华, 林燕丹, 孙耀杰. 基于光电热寿命理论的LED寿命预测模型[J]. 光学学报, 2012, 32(8): 0823001.

    Qian Minhua, Lin Yandan, Sun Yaojie. Life prediction model for LEDs based on the photo-electro-thermal-life theory[J]. Acta Optica Sinica, 2012, 32(8): 0823001.

[9] Dan Sporea. Effects of Gamma-ray irradiation on quantum-well semiconductor lasers[C]. Radiation Effects Data Workshop IEEE, 2004. 137-144.

[10] J Baggio, C Brisset, J L Sommer, et al.. Electrical and optical response of a laser diode to transient ionizing radiation[J]. IEEE Transactions on Nuclear Science, 1996, 43(3): 1038-1043.

[11] B D Evans, H E Hager, B W Hughlock. 5.5 MeV proton irradiation of a strained quantum-well laser diode and a multiple quantum-well broad-band LED[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1645-1654.

[12] Y F Zhao, A R Patwary, R D Schrimpf, et al.. 200 MeV proton damage effects on multi-quantum well laser diodes[J]. IEEE Transactions on Nuclear Science, 1997, 44(6): 1898-1905.

[13] A H Johnston, T F Miyahira, B G Rax. Proton damage in advanced laser diodes[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 1764-1772.

[14] A H Johnston. Proton displacement damage in light-emitting and laser diodes[J]. IEEE Transactions on Nuclear Science, 2001, 48(5): 1713-1720.

[15] A H Johnston, T F Miyahira. Radiation degradation mechanisms in laser diodes[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3564-3571.

[16] O Gilard. Theoretical study of radiation effects on GaAs/AlGaAs and InGaAsP/InP quantum well lasers[J]. Journal of Applied Physics, 2003, 93(4): 1884-1888.

[17] E C Auden, R A Weller, M H Mendenhall, et al.. Single particle displacement damage in silicon[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 3054-3061.

[18] Kitt Reinhardt. Radiation Effects on Emerging Electronic Materials and Devices[R]. Nashville: Vanderbilt University MURI Program Electrical Engineering and Computer Science Department, 2012.

[19] 黄绍艳, 刘敏波, 唐本奇, 等. InGaAsP多量子阱激光二极管及其组件的γ辐射效应[J]. 原子能科学技术, 2009, 43(11): 1024-1028.

    Huang Shaoyan, Liu Minbo, Tang Benqi, et al.. γ ray radiation effect on InGaAsP multi-quantum laser diodes and its component[J]. Atomic Energy Science and Technology, 2009, 43(11): 1024-1028.

[20] 黄绍艳, 刘敏波, 唐本奇, 等. 多量子阱激光二极管质子辐射效应及其退火特性[J]. 强激光与粒子束, 2009, 21(9): 1405-1410.

    Huang Shaoyan, Liu Minbo, Tang Benqi, et al.. Proton irradiation effects on multi-quantum-well laser diodes and their annealing characteristics[J]. High Power Laser and Particle Beams, 2009, 21(9): 1405-1410.

[21] Y F Zhao, R D Schrimpf, A R Patwary. Annealing effects on multi-quantum well laser diodes after proton irradiation[J]. IEEE Transactions on Nuclear Science, 1998, 45(6): 2826-2832.

[22] D R Hughart, R D Schrimpf, D M Fleerwood, et al.. The effects of proton-defect interactions on radiation-induced interface-trap formation and annealing[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 3087-3092.

[23] A H Johnston. Characterization of proton damage in light-emitting diodes[J]. IEEE Transactions on Nuclear Science, 2000, 47(6): 2500-2507.

刘韵, 赵尚弘, 杨生胜, 李勇军, 强若馨. 半导体激光器空间辐射应力加速寿命实验模型[J]. 中国激光, 2014, 41(5): 0502001. Liu Yun, Zhao Shanghong, Yang Shengsheng, Li Yongjun, Qiang Ruoxin. Accelerated Life Testing Model of Laser Diodes under Space Radiation Stress[J]. Chinese Journal of Lasers, 2014, 41(5): 0502001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!