大气与环境光学学报, 2022, 17 (2): 213, 网络出版: 2022-07-22  

2-甲基甘油酸-硫酸/甲磺酸团簇的大气物化特性研究

Atmospheric physicochemical properties of 2-methylglyceric acid-sulfuric acid/methanesulfonic acid clusters
赵锋 1,2,*冯亚娟 2
作者单位
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所大气物理化学实验室, 安徽 合肥 230031
2 中国科学技术大学信息科学技术学院, 安徽 合肥 230026
摘要
气溶胶通过散射或吸收长波和短波辐射影响着地球的气候系统。2-甲基甘油酸是一种气溶胶示踪剂, 在大气观测和成核实验中被多次观测到。而硫酸和甲磺酸作为非常重要的气溶胶前体物, 也受到广泛的关注。基于 DF-MP2-F12/VDZ-F12 结合 M06-2X/6-311++G(3df,3pd) 理论方法对 2-甲基甘油酸-硫酸/甲磺酸团簇进行了计算模拟, 分析了其在大气中的物理化学性质。结果表明 2-甲基甘油酸-硫酸团簇和 2-甲基甘油酸-甲磺酸团簇的吉布斯自由能具有相同的温度依赖性。2-甲基甘油酸-硫酸/甲磺酸团簇会优先蒸发 2-甲基甘油酸分子而不是硫酸/甲磺酸分子, 且随着尺寸增加,2-甲基甘油酸分子的蒸发速率迅速增加。此外, 还计算了 2-甲基甘油酸-硫酸/甲磺酸团簇的瑞利散射强度和极化率, 有助于理解此类团簇对大气光辐射的影响。
Abstract
Atmospheric aerosols can affect the climate system of the earth by scattering or absorbing long-wave and short-wave radiation. As one of the aerosol tracers, 2-Methylglyceric acid has been observed frequently in atmospheric observations and nucleation experiments. Sulfuric acid and methanesulfonic acid, as very important aerosol precursors, have also received extensive attention and been widely studied. Therefore, 2-methylglyceric acid-sulfuric acid/methanesulfonic acid clusters were simulated based on the theory level of DF-MP2-F12/VDZ-F12 combined with M06-2X/6-311G(3df,3pd), and their physicochemical properties in the atmosphere were analyzed. The results show that 2-methylglyceric acid-sulfuric acid cluster and 2-methylglyceric acid-methanesulfonic acid cluster have the same Gibbs free energy temperature dependence. 2-Methylglyceric acid-sulfuric acid/methanesulfonic acid clusters will preferentially evaporate 2-methylglyceric acid molecules rather than sulfuric acid/methanesulfonic acid molecules, and the evaporation rate of 2-methylglyceric acid molecules increases rapidly with the increase of the cluster size. In addition, the Rayleigh scattering intensity and polarizability of 2-methylglycericacid-sulfuric acid/methanesulfonic acid clusters are calculated, which is helpful to understand the influence of the clusters on atmospheric radiation.
参考文献

[1] Kulmala M, Vehkamki H, Petj T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations[J]. Journal of Aerosol Science, 2004, 35(2): 143-176.

[2] Zhang R Y. Getting to the critical nucleus of aerosol formation[J]. Science, 2010, 328(5984): 1366-1367.

[3] Zhang R Y, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3): 1957-2011.

[4] Kulmala M. How particles nucleate and grow[J]. Science, 2003, 302(5647): 1000-1001.

[5] Aalto P, Hmeri K, Becker E, et al. Physical characterization of aerosol particles during nucleation events[J]. Tellus B: Chemical and Physical Meteorology, 2001, 53(4): 344-358.

[6] Metzger A, Verheggen B, Dommen J, et al. Evidence for the role of organics in aerosol particle formation under atmospheric conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6646-6651.

[7] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489): 476-479.

[8] Turpin B J, Lim H J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass[J]. Aerosol Science and Technology, 2001, 35(1): 602-610.

[9] Cabada J C, Pandis S N, Robinson A L. Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania[J]. Journal of the Air & Waste Management Association, 2002, 52(6): 732-741.

[10] Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3210.

[11] Claeys M, Graham B, Vas G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303(5661): 1173-1176.

[12] Henze D K, Seinfeld J H. Global secondary organic aerosol from isoprene oxidation[J]. Geophysical Research Letters, 2006, 33(9): L09812.

[13] Hoyle C R, Berntsen T, Myhre G, et al. Secondary organic aerosol in the global aerosol—chemical transport model Oslo CTM2[J]. Atmospheric Chemistry and Physics, 2007, 7(21): 5675-5694.

[14] Edney E O, Kleindienst T E, Jaoui M, et al. Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samplescollected in the eastern United States[J]. Atmospheric Environment, 2005, 39(29): 5281-5289.

[15] Ion A C, Vermeylen R, Kourtchev I, et al. Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: Sources and diel variations[J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1805-1814.

[16] Nguyen T B, Laskin J, Laskin A, et al. Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene[J]. Environmental Science & Technology, 2011, 45(16): 6908-6918.

[17] Zhang H, Surratt J D, Lin Y H, et al. Effect of relative humidity on SOA formation from isoprene/NO photooxidation: Enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions[J]. Atmospheric Chemistry and Physics, 2011, 11(13): 6411-6424.

[18] Ding X, Wang X M, Xie Z Q, et al. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: Primary and secondary organic tracers[J]. Environmental Science & Technology, 2013, 47(7): 3149-3157.

[19] Hu Q H, Xie Z Q, Wang X M, et al. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic[J]. Scientific Reports, 2013, 3: 2280.

[20] von Glasow R, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens[J]. Atmospheric Chemistry and Physics, 2004, 4(3): 589-608.

[21] Barnes I, Hjorth J, Mihalopoulos N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere[J]. Chemical Reviews, 2006, 106(3): 940-975.

[22] Mauldin R L, Cantrell C A, Zondlo M, et al. Measurements of OH, H2SO4, and MSA during tropospheric ozone production about the spring equinox (TOPSE)[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D4): 8366.

[23] Facchini M C, Decesari S, Rinaldi M, et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology, 2008, 42(24): 9116-9121.

[24] Wyslouzil B E, Seinfeld J H, Flagan R C, et al. Binary nucleation in acid-water systems. I. Methanesulfonic acid-water[J]. The Journal of Chemical Physics, 1991, 94(10): 6827-6841.

[25] Dall′Osto M, Ceburnis D, Monahan C, et al. Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12): D12311.

[26] Nishino N, Arquero K D, Dawson M L, et al. Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces[J]. Environmental Science & Technology, 2014, 48(1): 323-330.

[27] Huang W, Pal R, Wang L-M, et al. Isomer identification and resolution in small gold clusters[J]. The Journal of Chemical Physics, 2010, 132(5): 054305.

[28] Liu Y R, Huang T, Jiang S, et al. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524-529.

[29] Ge P, Luo G, Luo Y, et al. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication[J]. Chemosphere, 2018, 210: 215-223.

[30] Han Y J, Feng Y J, Miao S K, et al. Hydration of 3-hydroxy-4, 4-dimethylglutaric acid with dimethylamine complex and its atmospheric implications[J]. Physical Chemistry Chemical Physics, 2018, 20(40): 25780-25791.

[31] Werner H J, Knowles P J, Knizia G, et al. Molpro: A general-purpose quantum chemistry program package[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2(2): 242-253.

[32] McGrath M J, Olenius T, Ortega I K, et al. Atmospheric Cluster Dynamics Code: A flexible method for solution of the birth-death equations[J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2345-2355.

[33] da Silva A M, Chakrabarty S, Chaudhuri P. Hydrogen-bonded glycine-HCN complexes in gas phase: Structure, energetics, electric properties and cooperativity[J]. Molecular Physics, 2015, 113(5): 447-462.

赵锋, 冯亚娟. 2-甲基甘油酸-硫酸/甲磺酸团簇的大气物化特性研究[J]. 大气与环境光学学报, 2022, 17(2): 213. ZHAO Feng, FENG Yajuan. Atmospheric physicochemical properties of 2-methylglyceric acid-sulfuric acid/methanesulfonic acid clusters[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 213.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!