激光技术, 2023, 47 (3): 305, 网络出版: 2023-12-05  

飞秒光丝中等离子体荧光和声音信号的研究

The investigation of fluorescence signal and acoustic signal from femtosecond filamentation
作者单位
兰州大学 核科学与技术学院, 兰州 730000
摘要
为了探究飞秒激光成丝的内在机制以实现长度表征, 采用荧光法和声学法, 得到了不同入射激光脉冲能量下和偏振态下等离子体光丝的荧光光谱和声音信号信息。结果表明,在相同激光脉冲能量下圆偏振光产生的N2荧光信号强度约为线偏振光的2倍, 而线偏振光产生的N2+荧光信号强度则约为圆偏振光的1.3倍; 等离子体荧光测量是获取等离子体光丝长度的有效途径, 相比于声学测量法更精确。该研究为揭示相干激光发射随光丝长度变化的物理实质提供了光丝长度表征的可行方案。
Abstract
To investigate the intrinsic mechanism of femtosecond laser filament formation to achieve length characterization, fluorescence spectra and acoustic signal information of the plasma filament at different incident laser pulse energies and polarization states were obtained by fluorescence and acoustic methods. The results show that, the intensity of N2 fluorescence signal produced by circularly polarized light is about twice of that of linearly polarized light with the same laser pulse energy, while the intensity of N2+ fluorescence signal produced by linearly polarized light is about 1.3 times of that of circularly polarized light; Plasma fluorescence measurement is an effective way to obtain the length of plasma filament, which is more accurate than acoustic measurement. This study provides a feasible solution to characterize the filament length by revealing the physical essence of coherent laser emission with filament length.
参考文献

[1] BRAUN A, KORN G, LIU X, et al. Self-channeling of high peak power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.

[2] XU H L, CHENG Y, CHIN S L, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3): 275-293.

[3] HOU M Y, WANG S Q, YAO D W, et al. Effects of pulse duration and polarization on femtosecond filament-induced fluorescence of combustion intermediates[J]. Chinese Journal of Lasers, 2019, 46(5): 0508024(in Chinese).

[4] LIU Y, DING P J, IBRAKOVIC N, et al. Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration[J]. Physical Review Letters, 2017, 119(20): 203205.

[5] XU H L, LTSTEDT E, IWASAKI A, et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling[J]. Nature Communications, 2015, 6(1): 8347.

[6] LI H L, HOU M Y, ZANG H W, et al. Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses[J]. Physical Review Letters, 2019, 122(1): 013202.

[7] FU Y, LTSTEDT E, LI H L, et al. Optimization of N2+ lasing through population depletion in the X2Σg+ state using elliptically mo-dulated ultrashort intense laser fields[J]. Physical Review Research, 2020, 2(1): 012007.

[8] AZARM A, CORKUM P, POLYNKIN P. Optical gain in rotationally excited nitrogen molecular ions[J]. Physical Review, 2017, A96(5): 051401.

[9] LI G H, JING Ch R, ZENG B, et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization[J]. Physical Review, 2014, A89(3): 033833.

[10] CHEN J M, YAO J P, ZHANG Zh H, et al. Electronic quantum coherence encoded in temporal structures of N2+ lasing[J]. Physical Review, 2021, A103(3): 033105.

[11] KELDYSH L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 1965, 20(5): 1307-1314.

[12] BRODEUR A, CHIEN C Y, ILKOV F A, et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 1997, 20(5): 304-306.

[13] MITRYUKOVSKIY S, LIU Y, DING P J, et al. Plasma luminescence from femtosecond filaments in air: Evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Le-tters, 2015, 114(6): 063003.

[14] WANG Q J, ZHANG Y H, WANG Zh H, et al. Control of molecular excitation during the plasma generation of a femtosecond laser pulse[J]. Chinese Optics Letters, 2016,14(11): 110201.

[15] ITIKAWA Y. Cross sections for electron collisions with nitrogen mo-lecules[J]. Journal of Physical and Chemical Reference Data, 2006, 35(1): 31-53.

[16] BECKER A, BANDRAUK A D, CHIN S L. S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule[J]. Chemical Physics Letters, 2001, 343(3/4): 345-350.

[17] COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/4): 47-189.

[18] MARBURGER J H. Self-focusing: Theory[J]. Progress in Quantum Electronics, 1975, 4(1): 35-110.

[19] LI S Y, JIN M X. Group velocity dispersion effect on the collapse of femtosecond laser pulses in air : A revised form for Marburger’s law[J]. Chinese Optics Letters, 2015, 13(12): 121901.

[20] HAN S Q, SHEN B, XIONG G, et al. Detection and analysis of photoacoustic signal from gas plasma[J]. Laser & Infrared, 2017,47(4): 428-431(in Chinese).

[21] HAO Z Q. Filamentation nonlinear optics of intense femtosecond laser pulses in air[D]. Beijing: Graduate University of Chinese Academy of Sciences(Institute of Physics CAS), 2007: 31-47(in Chin-ese).

郑悦, 李梓源, 张宇璇, 刘作业. 飞秒光丝中等离子体荧光和声音信号的研究[J]. 激光技术, 2023, 47(3): 305. ZHENG Yue, LI Ziyuan, ZHANG Yuxuan, LIU Zuoye. The investigation of fluorescence signal and acoustic signal from femtosecond filamentation[J]. Laser Technology, 2023, 47(3): 305.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!