硅酸盐通报, 2022, 41 (12): 4361, 网络出版: 2023-03-05  

含玻璃砂的高性能碱激发矿渣砂浆性能研究

Performance of Glass Sand-Containing High-Performance Alkali-Activated Slag Mortars
作者单位
1 湖南大学土木工程学院, 长沙 410082
2 湖南大学绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
3 湖南湖大土木建筑工程检测有限公司, 长沙 410082
摘要
采用玻璃砂代替部分细骨料制备碱激发矿渣(AAS)砂浆后, 研究了玻璃砂含量(0%、10%、20%、30%, 质量分数)对AAS砂浆抗压强度、抗折强度、干燥收缩、导热系数和碱-硅酸反应(ASR)膨胀率的影响, 并通过扫描电子显微镜(SEM)对微观机理进行了分析。结果表明: 掺10%~30%的玻璃砂能显著提高AAS砂浆的早期抗压强度, 但会略微降低28 d抗压强度; AAS砂浆的抗折强度随玻璃砂掺量的增加先增大后减小, 10%掺量时最有利于3 d抗折强度, 20%掺量时最有利于28 d抗折强度; AAS砂浆的干燥收缩、导热系数和ASR膨胀率均随玻璃砂掺量的增加而减小, 与对照组相比, 掺30%玻璃砂的AAS砂浆导热系数降低14.4%, 56 d干燥收缩率降低27.6%, 14 d ASR膨胀率降低39.6%, 28 d ASR膨胀率降低34.5%; SEM分析发现玻璃砂表面有水化产物生成, 其与胶凝材料的结合比石英砂更紧密, 使AAS砂浆的微观结构更加致密。
Abstract
Some fine aggregates were substituted for glass sand in the preparation of alkali-activated slag (AAS) mortars. The effects of glass sand content (0%, 10%, 20%, 30%, mass fraction) on compressive strength, flexural strength, drying shrinkage, thermal conductivity, and expansion rate of alkali-silicate reaction (ASR) of AAS mortars were tested, and the microscopic mechanism was analyzed by scanning electron microscope (SEM). The results demonstrate that the early compressive strength of AAS mortars can be significantly improved with 10% to 30% glass sand content, but the 28 d compressive strength can be slightly reduced. The flexural strength of AAS mortars increases first and then decreases with the increase of glass sand content.The 10% glass sand content is most favorable to the 3 d flexural strength, while the 20% glass sand content is most favorable to the 28 d flexural strength. With the increase of glass sand content, the drying shrinkage, thermal conductivity and ASR expansion rate of AAS mortars all decrease. The AAS mortar with 30% glass sand content is discovered that it has 14.4% lower thermal conductivity, 27.6% lower 56 d drying shrinkage, 39.6% lower 14 d ASR expansion rate, and 34.5% lower 28 d ASR expansion rate comparing to the control group. Hydration products are created on glass sand surface, and its binding with cementitious material is tighter than that of quartz sand, according to SEM examination, which makes the microstructure of AAS mortar compact.
参考文献

[1] BROUGH A R, HOLLOWAY M, SYKES J, et al. Sodium silicate-based alkali-activated slag mortars[J]. Cement and Concrete Research, 2000, 30(9): 1375-1379.

[2] 苏岳威,张 宁,吕宪俊,等.水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J].材料导报,2020,34(s1):271-276.

[3] CHI M, HUANG R. Binding mechanism and properties of alkali-activated fly ash/slag mortars[J]. Construction and Building Materials, 2013, 40: 291-298.

[4] CAI L C, WANG H F, FU Y W. Freeze-thaw resistance of alkali-slag concrete based on response surface methodology[J]. Construction and Building Materials, 2013, 49: 70-76.

[5] CUNNINGHAM P R, MILLER S A. Quantitative assessment of alkali-activated materials: environmental impact and property assessments[J]. Journal of Infrastructure Systems, 2020, 26(3): 4020021.

[6] AMER I, KOHAIL M, EL-FEKY M S, et al. A review on alkali-activated slag concrete[J]. Ain Shams Engineering Journal, 2021, 12(2): 1475-1499.

[7] LIU Y W, SHI C J, ZHANG Z H, et al. An overview on the reuse of waste glasses in alkali-activated materials[J]. Resources, Conservation and Recycling, 2019, 144: 297-309.

[8] 刘志海.我国废玻璃回收利用综述[J].玻璃,2018,45(10):1-8.

[9] 卞致璋.从发达国家的做法看我国废玻璃的回收与利用[J].中国建材,2003,52(6):51-55.

[10] BLENGINI G A, BUSTO M, FANTONI M, et al. Eco-efficient waste glass recycling: integrated waste management and green product development through LCA[J]. Waste Management, 2012, 32(5): 1000-1008.

[11] PANT D, SINGH P. Pollution due to hazardous glass waste[J]. Environmental Science and Pollution Research, 2014, 21(4): 2414-2436.

[12] HUSEIEN G F, SAM A R M, SHAH K W, et al. Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash[J]. Construction and Building Materials, 2019, 214: 355-368.

[13] SHOAEI P, AMERI F, MUSAEEI H R, et al. Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: a comprehensive comparative study[J]. Construction and Building Materials, 2020, 251: 118991.

[14] ABDEL-GAWWAD H A, MOHAMMED M S, ZAKEY S E. Preparation, performance, and stability of alkali-activated-concrete waste-lead- bearing sludge composites[J]. Journal of Cleaner Production, 2020, 259: 120924.

[15] NAJIMI M, GHAFOORI N. Engineering properties of natural pozzolan/slag based alkali-activated concrete[J]. Construction and Building Materials, 2019, 208: 46-62.

[16] DYER T D, DHIR R K. Chemical reactions of glass cullet used as cement component[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 412-417.

[17] POLLEY C. CRAMER S M, CRUZ R V.Potential for using waste glass in Portland cement concrete[J]. Journal of Materials in Civil Engineering, 1998, 10(4): 210-219.

[18] 俞宣良,黄 达,陈宣东,等.废弃玻璃作为辅助胶凝材料在混凝土中的应用和研究进展[J].硅酸盐通报,2019,38(5):1413-1419.

[19] LIMBACHIYA M C. Bulk engineering and durability properties of washed glass sand concrete[J]. Construction and Building Materials, 2009, 23(2): 1078-1083.

[20] WANG H Y. A study of the effects of LCD glass sand on the properties of concrete[J]. Waste Management, 2009, 29(1): 335-341.

[21] 王海娟,何小芳,张义顺,等.掺废旧玻璃水泥砂浆的力学性能及工作性能研究[J].硅酸盐通报,2011,30(4):875-879.

[22] 赵 晖,孙 伟.废弃阴极射线管玻璃砂对砂浆性能的影响[J].硅酸盐学报,2012,40(2):240-246.

[23] SI R Z, GUO S C, DAI Q L, et al. Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer[J]. Construction and Building Materials, 2020, 254: 119303.

[24] ZHANG S Z, KEULEN A, ARBI K, et al. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system[J]. Cement and Concrete Research, 2017, 102: 29-40.

[25] ZHANG L F, YUE Y. Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology[J]. Construction and Building Materials, 2018, 181: 527-534.

[26] TAN K H, DU H J. Use of waste glass as sand in mortar: part I-Fresh, mechanical and durability properties[J]. Cement and Concrete Composites, 2013, 35(1): 109-117.

[27] LU J X, POON C S. Use of waste glass in alkali activated cement mortar[J]. Construction and Building Materials, 2018, 160: 399-407.

[28] TITTARELLI F, GIOSU C, MOBILI A. Recycled glass as aggregate for architectural mortars[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 1-11.

[29] RAO G A. Long-term drying shrinkage of mortar-influence of silica fume and size of fine aggregate[J]. Cement and Concrete Research, 2001, 31(2): 171-175.

[30] SIKORA P, HORSZCZARUK E, SKOCZYLAS K, et al. Thermal properties of cement mortars containing waste glass aggregate and nanosilica[J]. Procedia Engineering, 2017, 196: 159-166.

[31] GUTIRREZ R M D, VILLAQUIRN-CAICEDO M A, GUZMN-APONTE L A. Alkali-activated metakaolin mortars using glass waste as fine aggregate: mechanical and photocatalytic properties[J]. Construction and Building Materials, 2020, 235: 117510.

[32] JIN W, MEYER C, BAXTER S. “Glascrete”-Concrete with glass aggregate[J]. ACI Materials Journal, 2009, 7(2): 208-213.

[33] BAZANT Z P, ZI G, MEYER C. Fracture mechanics of ASR in concretes with waste glass particles of different sizes[J]. Journal of Engineering Mechanics, 2000, 126(3): 226-232.

[34] SHI Z G, SHI C J, ZHAO R, et al. Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars[J]. Materials and Structures, 2015, 48(3): 743-751.

[35] SHI C J, SHI Z G, HU X, et al. A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates[J]. Materials and Structures, 2015, 48(3): 621-628.

[36] 刘光焰,高鹏飞,黄 达,等.废弃玻璃粉对ASR膨胀抑制作用机理研究[J].硅酸盐通报,2019,38(9):2788-2793.

龚建清, 董雅竹, 张浩, 涂贞军, 戴炜. 含玻璃砂的高性能碱激发矿渣砂浆性能研究[J]. 硅酸盐通报, 2022, 41(12): 4361. GONG Jianqing, DONG Yazhu, ZHANG Hao, TU Zhenjun, DAI Wei. Performance of Glass Sand-Containing High-Performance Alkali-Activated Slag Mortars[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4361.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!