量子电子学报, 2019, 36 (6): 752, 网络出版: 2019-12-06  

基于线性啁啾光纤光栅点式横向应力传感研究

Study on sensing of transverse strain in small applying scale with linearly chirped fiber Bragg grating
作者单位
南京邮电大学电子与光学工程学院光电传感工程研究中心, 江苏 南京 210023
摘要
线性啁啾光纤光栅受到横向应力作用时会产生轴向展宽。当作用线度即光纤 光栅受力区域长度与光纤直径相当时,该展宽不能忽略。基于空间弹性力学受力分析,可得到其轴向展宽导致的相移。 该光栅光谱中产生的透射峰位置与该相移的大小和位置有关。同时,横向应力会导致双折射现象。综上所有因素,建立了 利用斯托克斯参量(Stokes parameters)实现小线度作用区域即点式横向应变传感的理论模型。计算与实验结果表明:线 性啁啾光纤光栅在点式横向应力条件下,应力大小在弹性限度范围内与Stokes-s1参量峰值呈线性变化关系。Stokes-s1参量谱 峰波长与横向应力作用位置相对应,且与应力大小有关。通过分析透射谱的Stokes-s1参量,可实现对横向应力大小和位置的传感。
Abstract
There is some axial extension in the applying scale of linearly chirped fiber Bragg grating(LCFBG) with transverse strain, which should be considered when the length of the applying scale is the same order of magnitude as the diameter of fiber. Based on the analysis of spatial elasticity, phase shift in the modulated refractive index distribution of LCFBG resulting from the axial extension is obtained. And the transmission spectrum peak created in grating spectrum is related to the value and position of phase shift. Furthermore, transverse strain can lead to birefringence. Considering all the factors aforementioned, the theoretical sensing model of transverse strain in small applying scale that can be treated as a point is introduced, in which the Stokes parameter characteristics of LCFBG are very important and useful. Simulation and analysis results show that the transmission coefficient grows exponentially with transverse strain but the peak value of transmission Stokes parameter spectrum is linearly dependent on the value of transverse strain applying in LCFBG. There is a one-to-one correspondence between the peak wavelength of transmission Stokes-s1 parameter spectrum and the applying position of transverse strain. And the peak wavelength of transmission Stokes-s1 parameter spectrum grows linearly with the value of transverse strain. So the position and value of transverse strain in small applying scale can be converted through the analysis method of measuring the transmission Stokes-s1 parameter spectrum of LCFBG.
参考文献

[1] Kerdey A D, Davis M A, Patrick H J. Fiber grating sensors [J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.

[2] Byoungho L. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology, 2003, 9(2): 57-79.

[3] Udd E, Schulz W L, Seim J M, et al. Transversely loaded fiber optic grating strain sensors for aerospace applications [C]. SPIE, 2000, 3994: 96-104.

[4] Lawrence C M, Nelson D V. Measurement of transverse strains with fiber Bragg gratings [C]. Proceedings of Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, 1997, 3042: 218-228.

[5] Wagreich R B, Atia W A, Singh H, et al. Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber [J]. Electronics Letters, 1996, 32(13): 1223-1224.

[6] Wang Yiping, Wang Ming, Huang Xiaoqin. Transverse pressure sensor based on the polarization properties of fiber grating [J]. Chinese Journal of Lasers (中国激光), 2011, 38(4): 135-140 (in Chinese).

[7] Espejo R J, Dyer S D. Transverse-stress fiber Bragg grating sensor with high spatial resolution and temperature stability [J]. Journal of Lightwave Technology, 2007, 25(7): 1777-1785.

[8] Su Yang, Zhou Hua, Zhu Yong, et al. Study of secondary peak of polarization dependent loss of locally pressed fiber Bragg grating [J]. Acta Optica Sinica (光学学报), 2015, 35(3): 27-33 (in Chinese).

[9] Painchaud Y, Ogusu K. Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating [J]. Journal of Lightwave Technology, 2010, 28(14): 2017-2022.

[10] Lu Shaohua, Xu Ou, Dong Xiaowei, et al. Analysis for the reflective spectrum characteristics of chirped phase-shifted fiber gratings [J]. Chinese Journal of Lasers (中国激光), 2008, 35(4): 577-581 (in Chinese).

[11] Caucheteur C, Sébastien B, Raimundo G, et al. Influence of the grating parameters on the polarization properties of fiber Bragg gratings [J]. Journal of Lightwave Technology, 2009, 27(8): 1000-1010.

[12] Xiong Hai, Pei Li, Liu Chao, et al. Research on multi-wavelength filter based on chirped phase-shifted fiber Bragg grating [J]. Electron-Optic Technology Application (光电技术应用), 2014, 29(6): 32-35 (in Chinese).

[13] Hong Tao, Li Qianghua, Wang Dexin, et al. The grating polarization dependent loss (PDL) characteristics of the linear chirped fiber impacted with axial stress [J]. Natural Sciences Journal of Harbin Normal University (哈尔滨师范大学自然科学学报), 2012, 28(4): 44-48 (in Chinese).

[14] Gafsi R, El-Sherif M A. Analysis of induced-birefringence effects on fiber Bragg gratings [J]. Optical Fiber Technology, 2000, (3): 299-323.

[15] Caucheteur C, Bette S, Garcia-Olicina R, et al. Transverse strain measurements using the birefringence effect in fiber Bragg gratings [J]. IEEE Photonics Technology Letters, 2007, 19(3): 966-968.

[16] Pei Li, Wu Liangying, Wang Jianshuai, et al. Phase shift chirped fiber Bragg grating based distributed strain and position sensing [J]. Acta Physica Sinica (物理学报), 2017, 6(7): 19-27 (in Chinese).

涂兴华, 刁俊辉. 基于线性啁啾光纤光栅点式横向应力传感研究[J]. 量子电子学报, 2019, 36(6): 752. TU Xinghua, DIAO Junhui. Study on sensing of transverse strain in small applying scale with linearly chirped fiber Bragg grating[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 752.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!