光电技术应用, 2021, 36 (1): 43, 网络出版: 2021-09-13  

基于光学Tamm态的磁流体磁场传感器研究

Research on Magnetic Fluid Magnetic Field Sensor Based on Optical Tamm State
作者单位
山东理工大学 物理与光电工程学院, 山东 淄博 255000
摘要
磁场的传感测量在相关领域具有重要应用。利用磁流体的磁光效应, 提出了一种基于光学Tamm态的磁场传感结构。该结构由加载了金属层和电介质层的一维磁流体光子晶体构成。数值研究了该结构的结构参数对传感性能的影响。结果表明, 磁流体层越厚, 探测灵敏度就越高。金属层和电介质层的厚度均存在一个最佳值, 使得传感器具有较高的探测精度。结果还表明, 该传感结构的探测灵敏度优于已报道的采用光子晶体缺陷结构实现的磁场传感器。研究结果为基于光学Tamm态的磁流体磁场传感器的设计制备提供了参考。
Abstract
The sensing measurement of magnetic field has an important application in related fields. Using the magneto-optical effect of magnetic fluid, a magnetic field sensing structure based on optical Tamm state is proposed. The structure is composed of a one-dimensional magnetic fluid photonic crystal loaded with a metal layer and a dielectric layer. The influence of the structure parameters on the sensing performance is studied numerically. The results show that the thicker is the magnetic fluid layer, the higher is the detection sensitivity. The thickness of the metal layer and the dielectric layer both have an optimal value, so that the sensor has higher detection accuracy. The results also show that the detection sensitivity of the proposed sensing structure is better than that of the reported magnetic field sensor realized by photonic crystal defect structure. The research results provide a reference for the design and fabrication of magnetic fluid magnetic field sensors based on optical Tamm state.
参考文献

[1] Du G Q, Cui L Y, Zhang L W, et al. Tamm plasmon polaritons in composite structures composed of the metal film and truncated photonic crystals[J]. Applied Physics A, 2012, 109(4): 907-911.

[2] 蒋瑶, 张伟利, 朱叶雨.非对称DBR-金属-DBR结构的光学Tamm态理论研究[J]. 物理学报, 2013, 62(16): 167303.

[3] 李培丽, 高辉, 栾开智, 等.金属-DBR-金属结构中光学Tamm态的弱耦合特性研究[J]. 光谱学与光谱分析, 2020, 40(2): 650-655.

[4] 王磊, 栾开智, 左依凡, 等.基于光学Tamm态的石墨烯光调制器[J]. 中国激光, 2018, 45(11): 1106001.

[5] 黎志文, 陆华, 李扬武, 等.光学薄膜塔姆态诱导石墨烯近红外光吸收增强[J]. 光学学报, 2019, 39(1): 0131001.

[6] Afinogenov BI, Bessonov VO, Soboleva IV, et al. Ultrafast all-optical light control with Tamm plasmons in photonic nanostructures[J]. ACS Photonics, 2019, 6(4): 844-850.

[7] Huang S G, Chen K P, Jeng S C.Phase sensitive sensor on Tamm plasmon devices[J]. Optical Materials Express, 2017, 7(4): 1267-1273.

[8] Li N X, Tang T T, Li J, et al. Highly sensitive sensors of fluid detection based on magneto-optical optical Tamm state[J]. Sensors and Actuators B, 2018, 265: 644-651.

[9] Ahmed A M, Mehaney A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region[J]. Scientific Reports, 2019, 9:6973.

[10] Keshavarz M M, Alighanbari A.Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene[J]. Applied Optics, 2019, 58(13): 3604-3612.

[11] Keshavarz M M, Alighanbari A. Self-referenced terahertz refractive index sensor based on cavity resonance and Tamm plasmonic modes[J]. Applied Optics, 2020, 59(14): 4517-4526.

[12] Zaky Z A, Ahmed A M, Shalaby A S, et al. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimization[J]. Scientific Reports, 2020, 10: 9736.

[13] Li P F, Yan H T, Xie Z W, et al. An intensity-modulated and large bandwidth magnetic field sensor based on a tapered fiber Bragg grating[J]. Optics & Laser Technology, 2020, 125:105996.

[14] Zhang W X, Chen H L, Liu Y C, et al. Highly sensitive magnetic field sensor based on mode coupling effect in microstructured optical fibers[J]. Optical and Quantum Electronics, 2020, 52(3): 133.

[15] 武继江, 高金霞.镜像对称三元磁流体光子晶体的磁场传感特性[J]. 微纳电子技术, 2018, 55(10): 724-728.

[16] 武继江, 刘珍, 刘吉增.基于缺陷磁流体光子晶体的磁场传感器[J]. 科学技术与工程, 2018, 18(28): 220-223.

[17] Yu G J, Pu S L, Wang X, et al. Tunable one-dimensional photonic crystals based on magnetic fluids[J]. Optik, 2013, 124(17): 2713-2715.

高金霞, 傅尧, 赵浩旭, 武继江. 基于光学Tamm态的磁流体磁场传感器研究[J]. 光电技术应用, 2021, 36(1): 43. GAO Jin-xia, FU Yao, ZHAO Hao-xu, WU Ji-jiang. Research on Magnetic Fluid Magnetic Field Sensor Based on Optical Tamm State[J]. Electro-Optic Technology Application, 2021, 36(1): 43.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!