中国激光, 2024, 51 (5): 0511003, 网络出版: 2024-03-07  

样品温度对飞秒激光诱导Al等离子体中AlO光谱的影响

Effect of Sample Temperature on Spectra of AlO Molecules in Femtosecond Laser-Induced Al Plasma
作者单位
1 吉林大学白求恩第一医院核医学科,吉林 长春 130021
2 空军航空大学航空基础学院,吉林 长春 130022
3 空军航空大学作战勤务学院,吉林 长春 130022
4 吉林大学原子与分子物理研究所,吉林 长春 130012
摘要
针对飞秒脉冲激光诱导击穿光谱(fs-LIBS)中Al靶温度对AlO分子光谱的影响进行了实验研究。通过测量AlO分子的光谱强度和振动温度,发现Al靶温度对fs-LIBS技术中AlO分子的光谱特性有显著的影响。研究结果表明,提高靶材温度能有效增强fs-LIBS中AlO分子的光谱信号强度,并提高分子的振动温度和寿命。此外,时间分辨光谱分析结果还揭示出在高Al靶温度条件下,AlO分子的辐射寿命较长,光谱信号强度较强。这意味着在高温下,分子能够停留更长的时间,增加了光谱信号的持续时间。通过调控飞秒激光能量和靶材温度,可以获得更强的分子发射和光谱信号,从而实现更高的灵敏度和准确性。研究结果为fs-LIBS技术中样品温度对分子光谱的调控机制研究提供了实验数据。
Abstract
Objective

Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic technique that uses laser-induced plasma. In recent years, research has focused on spectral-enhancement techniques aimed at improving the detection sensitivity and resolution of LIBS. During LIBS analysis, the sample temperature can influence the intensity and shape of the observed spectral signals. Increasing the sample temperature increases the thermal motion of atoms, ions, and molecules within the sample, thereby increasing the probability of excitation and emission and ultimately enhancing the intensity of the spectral signals. Moreover, the sample temperature can affect the excited-state lifetimes of the elements, which influences the spectral signals. Different elements have different excited-state lifetimes, and changing the sample temperature can alter the width, shape, and position of the spectral peaks. With the advancement of laser technology, femtosecond (fs)-pulsed lasers have been introduced in LIBS research, offering several advantages over traditional nanosecond LIBS. Owing to the extremely short pulse duration of femtosecond lasers, they can reduce background noise interference and improve the spectral signal resolution compared to nanosecond pulses. The energy of femtosecond pulses is highly concentrated and short-lived, resulting in minimal heat and energy transfer to the sample. Thus, using femtosecond lasers for spectroscopic analysis does not damage or alter the sample, making them particularly suitable for samples with low tolerance. Spark-induced background signal interference, which often occurs in nanosecond LIBS, is reduced or avoided in fs-LIBS owing to the shorter pulse duration of femtosecond lasers. Furthermore, in nanosecond LIBS, longer pulse widths can lead to secondary heating of the plasma and plasma with a higher temperature, where atoms or ions dominate and molecules tend to dissociate. In contrast, femtosecond lasers generate plasma at a lower temperature, making it more favorable for molecular formation. Although numerous studies have explored the effect of the sample temperature on LIBS, there is limited research on the influence of the sample temperature on the molecular spectra of fs-LIBS. Therefore, this study aims to investigate the effect of the sample temperature on the AlO molecular band spectrum in Al plasma excited by femtosecond pulses.

Methods

The experimental setup of the fs-LIBS system comprises femtosecond laser system, laser energy attenuator, beam focusing system, sample heating and motion system, spectral acquisition system, and data acquisition and analysis system. Femtosecond laser system utilizes a Ti∶Sapphire femtosecond amplifier. Laser energy attenuation is achieved using a half-wave plate and Glan polarizer. The lens has a focal length of 100 mm. The sample is heated using a proportion-integration-differentiation (PID)temperature-controlled heating table, and motion control is accomplished using a three-dimensional motorized stage. The spectral acquisition system comprises a spectrometer and an intensified charge coupled device (ICCD) camera. The data acquisition and analysis system primarily includes a computer used for collecting and processing the measured spectral data. During the experiment, the sample temperature is initially increased using a heating stage, and then a femtosecond laser is focused on a pure aluminum target to produce plasma. Simultaneously, the motorized stage moves the heating stage and aluminum target to ensure laser ablation on a fresh sample surface. The plasma emission is collected by a lens and guided into the spectral detection system through an optical fiber. The acquired signals are transmitted to a computer. The experiment is conducted under atmospheric conditions.

Results and Discussions

First, a comparison is made of the ablative effects of femtosecond lasers on Al targets with three initial sample temperatures: 30, 100, and 200 ℃. The measurements focus on the AlO molecular spectral band from the B2Σ+ to the X2Σ+ transition. The experimental results show that at two laser energies (100 μJ and 200 μJ), the Al targets heated to 100 ℃ and 200 ℃ yield stronger AlO spectra compared to the spectra from the Al target at 30 ℃. To understand the influence of the Al target temperature on the AlO molecular spectrum in detail, the experiment records the intensity of the AlO (0-0) peak as a function of the Al target temperature under laser energies of 100 μJ and 200 μJ. The intensity of the AlO (0-0) peak increases monotonically with the increasing Al target temperature. This result indicates that using a lower laser energy and higher target temperature makes it possible to achieve the emission of molecules in laser-induced plasma at the same or even stronger levels. This implies that at higher target temperatures, stronger molecular emissions can be obtained with a lower laser energy, potentially affecting the optimization and application of laser-induced plasma spectroscopic analysis techniques. To further understand the effect of the Al target temperature on the AlO molecular spectrum in fs-LIBS, it is necessary to consider the influence of the sample temperature on the vibrational temperature of the AlO molecules. The experimental results demonstrate that the vibrational temperature of the AlO molecules increases with the Al target temperature. Clearly, greater laser energy produces stronger plasma, resulting in higher vibrational temperatures for the AlO molecules within the plasma. Moreover, in LIBS, the plasma generated by the laser ablation of a target changes dynamically. Therefore, a time-resolved spectroscopic analysis of the AlO molecules is essential to better understand the influence of the Al target temperature on the AlO molecular spectrum in fs-LIBS. The experimental results reveal that increasing the Al target temperature significantly enhances the spectral intensity and prolongs the lifetime of the AlO molecules in fs-LIBS. Thus, the time-integrated spectra of AlO at higher Al target temperatures are stronger than those at lower Al target temperatures.

Conclusions

This study investigates the influence of the Al target temperature on the AlO molecular spectrum in fs-LIBS. Increasing the Al target temperature effectively enhances the spectral signal of AlO molecules in fs-LIBS. This is because, at higher temperatures, the femtosecond laser can more efficiently excite the target material, leading to the generation of more electrons and greater energy for molecular excitation, thereby increasing the production and emission of AlO molecules. Furthermore, as the Al target temperature increases, the vibrational temperature of the AlO molecules also increases. This indicates that the molecules are subjected to higher thermal excitation and exist in higher energy states, which increases their spectral intensity and activity. Moreover, increasing the target temperature further enhances the molecular excitation and emission processes, thereby increasing the intensity and duration of the spectral signals. Time-resolved spectroscopy reveals that the AlO molecules exhibit longer lifetimes and higher spectral intensities at higher Al-target temperatures. This suggests that at higher Al target temperatures, AlO molecules can remain in an excited state for longer time, thereby increasing the intensity and duration of the molecular emission. Therefore, by adjusting the Al target temperature, the spectral intensity and vibrational temperature of AlO in fs-LIBS can be optimized, thereby improving energy utilization and analytical accuracy.

1 引言

激光诱导击穿光谱(LIBS)是一种利用激光诱导等离子体产生的光谱技术1。它通过将高强度激光脉冲聚焦在样品表面,产生极高温度和压力条件下的等离子体。当激光脉冲瞬间加热样品时,样品中的原子和分子被激发成高能态,随后经历自由电子碰撞和再结合等过程,形成光辐射。这些辐射被收集并传递给光谱仪,通过测量和分析,可以获得样品的光谱信息。

激光诱导等离子体光谱具有许多优点,如快速、非接触和无需样品准备等。它可以用于元素分析、化学成分检测和矿物研究等2。通过分析样品的光谱特征,可以确定元素的种类和含量,甚至可以检测微量元素。近年来,激光诱导等离子体光谱研究也存在一些挑战,研究者们不断探索和改进LIBS技术,以进一步提高其性能,拓宽其应用范围3。其中一个研究热点是LIBS增强技术,旨在提高LIBS的检测灵敏度和分辨率4。在LIBS技术中,有几种常见的信号增强方法可以提高信号质量和检测灵敏度,如改变激光参数(能量、脉宽和重复频率等)5、优化聚焦条件6、降低背景辐射7、数据预处理8以及多元分析方法9等。还可以通过附加额外的设备来增强信号强度,典型的一些方法有空间约束LIBS10、双脉冲LIBS11、磁场加强LIBS12、微波增强LIBS13以及放电辅助LIBS14等。这些方法都是为了增强LIBS信号强度和提高分析灵敏度。另外,样品温度对LIBS的强度有一定的影响。在LIBS分析过程中,样品的温度可以影响观测到的光谱信号的强度和形状。首先,样品温度的升高会导致样品内部的原子、离子和分子的热运动增加,从而增加了激发态的存在概率,提高了辐射发射的概率,进而增强了光谱信号的强度15。因此,通常情况下,样品温度的升高会使LIBS信号的强度增加。然而,当样品温度过高时,可能会发生蒸发、化学反应或其他样品物理性质变化,这可能会降低光谱信号的强度。此外,不同元素的激发态寿命各不相同,而样品温度的变化会对激发态寿命产生影响,导致光谱峰的宽度、形状和位置发生变化。

随着激光技术的发展,飞秒(fs)脉冲激光被引入到LIBS研究中16,fs-LIBS相对于传统纳秒LIBS具有诸多优势。fs激光的脉冲宽度非常短,相对于纳秒脉冲,可以减少背景噪声的干扰,提高光谱信号的分辨率17。fs激光具有极窄的脉冲宽度和极高的峰值功率,样品吸收的热和能量相对较少18,因此可以在不破坏或损伤样品的情况下利用fs激光进行光谱分析,这特别适用于具有较低耐受性的样品。纳秒激光产生的火花在光谱信号中可能产生较高的背景信号干扰,而fs激光由于具有短脉冲宽度,可以减少或避免这种背景信号干扰。fs激光的特性使得它能够更精确地进行材料表征和分析19。在纳秒LIBS难以应用的领域,如薄膜分析、材料组分测量和微观结构分析等,fs激光有着广泛的应用20。另外,在纳秒LIBS技术中,长的脉冲宽度会导致等离子体再次被加热,产生更高温度的等离子体,使得等离子体中的原子或离子占主导地位,而等离子体中的分子在高温下容易解离。相比之下,fs激光产生的等离子体温度较低,更适合分子的形成21。LIBS中的分子发射光谱可用于检测和分析有机材料,包括硝基化合物、聚合物、炸药和生物样品等22。它还可以利用分子同位素光谱中相对较大的同位素位移来分析同位素。而LIBS中的氧化铀(UO)分子光谱对于核废料和含铀材料的分析非常重要。因此,LIBS中的分子光谱在多个领域中具有很大的应用潜力。虽然许多研究已经探讨了样品温度对LIBS的影响,但很少有研究探讨样品温度对fs-LIBS中的分子光谱的影响。因此,本文旨在研究飞秒脉冲激发下Al等离子体中样品温度对AlO分子带谱的影响。

本文利用fs脉冲激光激发Al靶产生LIBS,通过设置不同的Al靶初始温度,探测fs-LIBS中的AlO分子光谱,讨论样品温度对fs-LIBS中的分子光谱的影响。

2 实验装置

图1给出了样品温度影响fs-LIBS光谱强度的实验装置示意图。飞秒脉冲激光系统是一台Ti∶Sapphire放大器,脉宽为50 fs、波长为800 nm。激光系统工作在“single-shot”模式,向同步和延迟发生器(SDG)的串口发送命令以输出激光脉冲。输出的激光通过一个由半波片和格兰棱镜组成的能量衰减器后,激光脉冲的能量发生改变。随后,激光被一个焦距为100 mm的平凸透镜聚焦到纯Al样品上产生等离子体。Al样品被放置在一个加热台[比例-积分-微分(PID)算法实现温控]上,这个加热台被固定在一个三维电动位移台上,可以确保每个激光脉冲烧蚀新的样品表面。激光产生的Al等离子体辐射通过一个焦距为75 mm、直径为50 mm的透镜后会聚到一条光纤中,光纤将光辐射导入到由光谱仪和增强型电荷耦合器件(ICCD)组成的光谱探测系统中,ICCD的触发信号来自于SDG。ICCD将获得的光谱信号传输到计算机中进行数据处理、光谱拟合和谱线识别等。整个实验过程在大气的环境中进行。

图 1. 实验装置示意图

Fig. 1. Schematic of experimental equipment

下载图片 查看所有图片

3 结果与讨论

3.1 时间积分的光谱

首先,在不同初始样品温度(30、100、200 ℃)下利用fs激光烧蚀Al靶,测量得到的AlO分子光谱如图2所示,AlO分子光谱带对应B2Σ+→X2Σ+跃迁23。可以看到,高能量(200 μJ)下fs激光烧蚀铝靶产生的光谱明显强于低能量(100 μJ)下的光谱。AlO分子是激光诱导Al靶等离子体与空气中的O2发生碰撞产生的,郭连波等24详细地阐述了激光烧蚀Al靶产生AlO分子光谱的物理机制,Al与O2碰撞产生的AlO分子处于基态(X2Σ+),激发态(B2Σ+)的AlO分子来自于Al、O与O2的二次碰撞。显然。高的激光能量能够给Al靶提供更多的能量,从而更有效地激发靶中的Al原子,形成更强的等离子体,强的等离子体与空气中的O2有更强的碰撞,产生更多激发态的AlO分子,辐射出更强的AlO分子光谱。

图 2. 不同样品温度下的AlO分子光谱。(a)激光能量为100 μJ;(b)激光能量为200 μJ

Fig. 2. Spectra of AlO molecules under different sample temperatures. (a) Laser energy is 100 μJ; (b) laser energy is 200 μJ

下载图片 查看所有图片

图2还可以看出,在两种激光能量(100 μJ和200 μJ)下,升温后(100 ℃和200 ℃)的Al靶获得的AlO光谱强于升温前(30 ℃)Al靶的光谱。为了详细地研究Al靶温度对AlO分子光谱的影响,图3展示了在100 μJ和200 μJ激光能量下AlO(0-0)峰强度随着Al靶温度的变化。可以看出,在30~200 ℃的温度范围内,AlO(0-0)峰强度随着Al靶温度的增加而单调增加。这个结果表明,通过使用更低的激光能量和更高的靶材温度,可以在激光诱导等离子体过程中获得同样或甚至更强的分子发射25。这意味着在更高的靶材温度下,我们能够以更少的激光能量获得更强的LIBS分子辐射,这对于激光诱导等离子体光谱分析技术的优化和应用具有潜在的影响。分子的发射光谱是在激光诱导等离子体过程中产生的,其强度与分子的能级跃迁和激发态的数量相关。当靶材温度升高时,分子的热激发增加,能级跃迁的概率也随之增加。因此,升高温度可以在辐射源中产生更多的激发态分子,从而增加发射光谱的强度。此外,靶材温度的升高还会影响激光与靶材的相互作用过程。温度升高会导致靶材表面的反射率降低,靶材对激光能量的吸收效率增加26。这意味着能够以更低的激光能量来实现相同或更强的激光诱导等离子体发射。这一发现对于提高能量利用率、降低激光功率要求具有重要的应用意义,同时也为激光诱导等离子体光谱技术的应用提供了更多的可能性。因此,通过调控靶材温度和激光能量,我们可以在激光诱导等离子体中获得更强的分子发射,这也能促使我们更好地理解激光诱导等离子体的物理过程。

图 3. AlO(0-0)峰强度随着样品温度的变化

Fig. 3. AlO (0-0) peak intensity versus sample temperature

下载图片 查看所有图片

相对标准差(RSD)是一个用于评估数据一致性和可靠性的指标。它是标准差与平均值的比值,通常用百分比的形式表示。在LIBS信号中,较低的RSD值意味着分析结果的重复性较好,结果更加可靠。这对于确定元素含量、检测样品的一致性以及确定痕量元素等至关重要。图4给出了不同Al靶温度下fs-LIBS中AlO(0-0)峰强的RSD。可以看出,高fs激光能量(200 μJ)下的RSD小于低fs激光能量(100 μJ)下的RSD。高激光能量产生的光谱信号相对较强,相对噪声水平较低,光谱信号的RSD较高,故可在光谱分析中准确地检测目标元素的信号。低激光能量下LIBS信号的RSD通常较高,而高激光能量下LIBS信号的RSD通常较低,这是由于在较低的激光能量下光谱强度较低。由于光谱信号的强度与激发态粒子的数量相关,而粒子数的测量容易受到噪声的干扰,故较低的光谱强度可能导致噪声的相对影响较大,从而增加了光谱信号的离散程度和RSD值。相比之下,高激光能量通常可以产生较高的光谱信号强度,从而降低了RSD值。由图4还可以看出,随着Al靶温度的增加,RSD逐渐降低,这表明升高Al靶温度能够有效地提高AlO分子光谱信号的稳定性和可重复性。从前面的分析了解到,光谱信号增强的一个重要的原因是靶材表面反射率的降低增加了Al靶对激光能量的吸收。也就是说,升高温度增加了fs激光与Al靶之间的相互作用,产生了更强的等离子体,等离子体包含更多的激发态的AlO分子,这样就降低了实验过程中一些实验误差及噪声对信号的干扰,从而降低了AlO分子光谱信号的RSD。

图 4. 不同样品温度下AlO(0-0)峰强的RSD值

Fig. 4. RSD values of AlO (0-0) peak intensity under different sample temperatures

下载图片 查看所有图片

为了深入地理解Al靶温度对fs-LIBS中AlO分子光谱的影响,讨论了样品温度对AlO分子振动温度的影响。实验中我们使用现有的理论模型拟合AlO分子光谱以获得振动温度27。简而言之,从高态u到低态l,对应的分子谱线强度为

Iul=16π3c(a0e)2CabsN03ε0QCvvul4Sulexp[hFu  /(kT)]

式中:a0是玻尔半径;e是基本电荷;c是光速;ε0是介电常数;Q是配分函数;N0是粒子数;CabsCv是绝对和相对校准因子;vul是跃迁频率;h是普朗克常数;Fu是上限值;k是玻尔兹曼常数;T是温度;Sul是双原子分子线强度。Parigger等27详细地描述了AlO分子振动温度的计算过程。图5对比了测量的AlO光谱和拟合的AlO光谱,能够看出,拟合的光谱与实验测量的光谱吻合较好。图6给出了fs-LIBS中AlO分子振动温度随Al靶温度变化的规律。可以看出:在高激光能量下,AlO分子的振动温度更高;AlO分子振动温度随着Al靶温度的增加而增加。显然,更高的激光能量能产生更强的等离子体,故等离子体中AlO分子的振动温度更高。当升高Al靶温度时,其表面反射率降低,Al靶能耦合更多的激光能量,导致等离子体中AlO的振动温度升高。同时,等离子体温度较高,其包含许多自由电子和离子,热能会通过碰撞和辐射的方式传递给分子。当样品温度升高时,这种热能的传递速率也会增加,进而分子的振动温度升高。

图 5. 当激光能量为100 μJ时测量和拟合光谱的对比。(a)样品温度为30 ℃;(b)样品温度为200 ℃

Fig. 5. Comparison of measured and fitting spectra when laser energy is 100 μJ. (a) Sample temperature is 30 ℃; (b) sample temperature is 200 ℃

下载图片 查看所有图片

图 6. AlO分子振动温度随样品温度的变化

Fig. 6. AlO molecular vibration temperature versus sample temperature

下载图片 查看所有图片

3.2 时间分辨的光谱

在LIBS中,激光烧蚀靶产生的等离子体是动态变化的28。因此,为了更好地了解Al靶温度对fs-LIBS中AlO分子光谱的影响,需要获得AlO分子的时间分辨光谱。图7显示了Al靶温度为30 ℃和200 ℃时AlO分子谱带随延迟时间变化的规律。为了清晰地对比时间分辨光谱,图8给出了Al靶温度为30 ℃和200 ℃时AlO(0-0)峰值强度随着延迟时间变化的规律。可以看出,Al靶温度的升高显著提高了fs-LIBS中AlO分子的光谱强度,并延长了其寿命。因此,相比低Al靶温度,高Al靶温度下AlO时间积分的光谱更强,如图2所示。随着Al靶温度的升高,更多的Al原子处于激发态,这增加了AlO分子的形成概率。同时,对于AlO分子的生成反应,提高Al靶温度会加快反应速率。这意味着在较高的Al靶温度下,更多的Al原子能够与氧气快速反应,从而生成更多的AlO分子。靶温度升高会导致激发态寿命的延长,当Al原子被激发到高能级时,它们可以通过自发辐射或非辐射传能的方式退激。在较高的Al靶温度下,非辐射退激的速率相对较慢,这使得激发态的寿命变长。因此,AlO分子在较高温度下可以停留更长的时间,这使得其光谱强度增强。

图 7. 当激光能量为100 μJ时AlO分子的时间分辨光谱。(a)样品温度为30 ℃;(b)样品温度为200 ℃

Fig. 7. Time-resolved spectra of AlO molecules when laser energy is100 μJ. (a) Sample temperature is 30 ℃; (b) sample temperature is 200 ℃

下载图片 查看所有图片

图 8. 当激光能量为100 μJ时,不同样品温度下AlO(0-0)峰值强度随延迟时间的变化

Fig. 8. Peak intensity of AlO (0-0) versus delay time under different sample temperatures when laser energy is 100 μJ

下载图片 查看所有图片

类似于时间积分的光谱,通过拟合图7中的时间分辨的光谱数据,获得了fs-LIBS中AlO时间分辨的振动温度,如图9所示。可以看出,相较于低Al靶温度(30 ℃),高Al靶温度(200 ℃)下AlO分子振动温度在各个延迟时间上均较高。特别是在较长的延迟时间内,低Al靶温度下AlO分子振动温度的降低速度非常快。这是因为在高样品温度下,激发态寿命相对较长。当激发态的AlO分子退激时,其能量转移到振动模式上,从而使分子的振动温度升高。同时,高温条件下分子之间的碰撞频率增加,这些碰撞可以引起能量传递,使分子的振动能量增加。因此,高样品温度下更高的碰撞频率增加了振动温度。另外,在低样品温度下,AlO分子的振动能级间隔及振动模式之间的能量差很小。因此,能量转移到振动模式上的速度比较快,导致振动温度的降低更迅速。然而,在高样品温度下,能量转移到振动模式上的速率比较慢,振动温度相对较高。因此,高Al靶温度下fs-LIBS中的AlO分子有较高的振动温度。

图 9. 当激光能量为100 μJ时,不同样品温度下AlO分子振动温度随延迟时间的变化

Fig. 9. Vibration temperature of AlO molecule versus delay time under different sample temperatures when laser energy is 100 μJ

下载图片 查看所有图片

4 结论

探究了fs-LIBS中Al靶温度对AlO分子光谱的影响,通过增加Al靶温度,可以有效增强fs-LIBS中AlO分子的光谱信号。这是因为高温下fs激光能够更有效地激发靶材产生等离子体,为分子激发提供了更多的电子和能量,从而增加了AlO分子的生成和辐射概率。其次,随着Al靶温度的增加,RSD逐渐降低,升高Al靶温度能够有效低提高AlO分子光谱信号的稳定性。再次,随着Al靶温度的升高,AlO分子的振动温度也随之增加。这表明分子受到更强的热激发,处于更高能量的状态,分子的光谱强度和活性得到增加。另外,增加靶材温度可以进一步增强分子的激发和辐射强度,提高光谱信号强度并延长其持续时间。时间分辨的光谱显示,高Al靶温度下AlO分子的寿命较长,光谱信号强度较高。这表明在高Al靶温度下,AlO分子能够停留更长的时间,分子发射的强度和持续时间增加。因此,通过调节Al靶温度,可以优化fs-LIBS中AlO分子光谱的强度和振动温度,进一步提高能量的利用率和分析的准确性。

参考文献

[1] Winefordner J D, Gornushkin I B, Correll T, et al. Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(9): 1061-1083.

[2] Carter S, Fisher A, Garcia R, et al. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and functional materials[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2114-2164.

[3] Dell'Aglio M, Alrifai R, De Giacomo A. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy (NELIBS), a first review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 148: 105-112.

[4] Zhang N, Ou T X, Wang M, et al. A brief review of calibration-free laser-induced breakdown spectroscopy[J]. Frontiers in Physics, 2022, 10: 887171.

[5] Song C, Gao X, Shao Y. Pre-ablation laser parameter effects on the spectral enhancement of 1064 nm/1064 nm dual-pulse laser induced breakdown spectroscopy[J]. Optik, 2016, 127(8): 3979-3983.

[6] Wang Q Y, Ge T, Liu Y T, et al. Effect of the lens-to-target distance on the determination of Cr in water by the electro-deposition method and laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2675-2683.

[7] Guo K M, Chen A M, Xu W P, et al. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy[J]. AIP Advances, 2019, 9(6): 065214.

[8] Guo Y M, Deng L M, Yang X Y, et al. Wavelet-based interference correction for laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2401-2406.

[9] El Rakwe M, Rutledge D N, Moutiers G, et al. Analysis of time-resolved laser-induced breakdown spectra by mean field-independent components analysis (MFICA) and multivariate curve resolution-alternating least squares (MCR-ALS)[J]. Journal of Chemometrics, 2017, 31(2): e2869.

[10] 代玉银, 于丹, 李英华, 等. 不同空间约束壁数对激光诱导铜击穿光谱的影响[J]. 中国激光, 2022, 49(6): 0611001.

    Dai Y Y, Yu D, Li Y H, et al. Effect of different numbers of spatial confinement walls on laser-induced Cu plasma spectra[J]. Chinese Journal of Lasers, 2022, 49(6): 0611001.

[11] 李文平, 周卫东. 溶液中Ba元素的水下单脉冲与正交双脉冲LIBS的比较研究[J]. 中国激光, 2019, 46(9): 0911003.

    Li W P, Zhou W D. Comparative study of underwater single pulse and orthogonal double pulse laser-induced breakdown spectroscopy of Barium element in solution[J]. Chinese Journal of Lasers, 2019, 46(9): 0911003.

[12] Hussain A, Tanveer M, Farid G, et al. Combined effects of magnetic field and ambient gas condition in the enhancement of laser-induced breakdown spectroscopy signal[J]. Optik, 2018, 172: 1012-1018.

[13] Ikeda Y, Soriano J K, Wakaida I. Plasma emission intensity expansion of Zr metal and Zr oxide via microwave enhancement laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(6): 1275-1284.

[14] 曹宇, 康娟, 陈钰琦, 等. 高重复频率激光剥离-火花诱导击穿光谱中原子辐射的时域特性研究[J]. 中国激光, 2020, 47(6): 0611002.

    Cao Y, Kang J, Chen Y Q, et al. Temporal profiles of atomic emissions in high-repetition-rate laser-ablation spark-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(6): 0611002.

[15] 齐洪霞, 赵亮, 金川琳, 等. 样品温度对纳秒激光诱导铝等离子体光谱强度的影响[J]. 中国激光, 2019, 46(2): 0211002.

    Qi H X, Zhao L, Jin C L, et al. Influence of sample temperature on spectral intensity of nanosecond laser-induced aluminum plasma[J]. Chinese Journal of Lasers, 2019, 46(2): 0211002.

[16] Labutin T A, Lednev V N, Ilyin A A, et al. Femtosecond laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 90-118.

[17] 于丹, 孙艳, 冯志书, 等. 通过圆偏振光提高飞秒激光诱导击穿光谱的发射强度[J]. 中国激光, 2021, 48(1): 0111001.

    Yu D, Sun Y, Feng Z S, et al. Improving emission intensity of femtosecond laser-induced breakdown spectroscopy by using circular polarization[J]. Chinese Journal of Lasers, 2021, 48(1): 0111001.

[18] Wang Q Y, Dang W J, Jiang Y F, et al. Emission enhancement of femtosecond laser-induced breakdown spectroscopy using vortex beam[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55(9): 095402.

[19] He X Y, Chen B Q, Chen Y Q, et al. Femtosecond laser-ablation spark-induced breakdown spectroscopy and its application to the elemental analysis of aluminum alloys[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(12): 2203-2209.

[20] Wang Y Z, Cheng X Z, Shao J F, et al. The damage threshold of multilayer film induced by femtosecond and picosecond laser pulses[J]. Coatings, 2022, 12(2): 251.

[21] Chen Y T, Liu Y T, Wang Q Y, et al. Effect of laser polarization on molecular emission from femtosecond LIBS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(1): 82-88.

[22] Gaft M, Nagli L, Gornushkin I, et al. Review on recent advances in analytical applications of molecular emission and modelling[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 173: 105989.

[23] Wang Q Y, Chen A M, Xu W P, et al. Effect of lens focusing distance on AlO molecular emission from femtosecond laser-induced aluminum plasma in air[J]. Optics & Laser Technology, 2020, 122: 105862.

[24] 郭连波, 郝荣飞, 郝中骐, 等. 激光诱导AlO自由基B2Σ+→X2Σ+跃迁光谱研究[J]. 物理学报, 2013, 62(22): 224211.

    Guo L B, Hao R F, Hao Z Q, et al. Study on laser-induced B2Σ+→X2Σ+ transition spectrum of AlO radical[J]. Acta Physica Sinica, 2013, 62(22): 224211.

[25] Liu Y T, Wang Q Y, Jiang L Y, et al. Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures[J]. Chinese Physics B, 2022, 31(10): 105201.

[26] Ujihara K. Reflectivity of metals at high temperatures[J]. Journal of Applied Physics, 1972, 43(5): 2376-2383.

[27] Parigger C G, Hornkohl J O. Computation of AlO B2Σ+→X2Σ+ emission spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 81(1): 404-411.

[28] 王俊, 钟建英, 柯伟, 等. 环境气压对激光诱导等离子体内靶材元素与空气元素光谱时间分辨特性的影响[J]. 中国激光, 2023, 50(5): 0511001.

    Wang J, Zhong J Y, Ke W, et al. Effect of ambient pressure on spectral time resolution characteristics of target and air elements in laser-induced plasma[J]. Chinese Journal of Lasers, 2023, 50(5): 0511001.

代玉银, 孙艳, 冯志书, 于丹, 陈安民, 金明星. 样品温度对飞秒激光诱导Al等离子体中AlO光谱的影响[J]. 中国激光, 2024, 51(5): 0511003. Yuyin Dai, Yan Sun, Zhishu Feng, Dan Yu, Anmin Chen, Mingxing Jin. Effect of Sample Temperature on Spectra of AlO Molecules in Femtosecond Laser-Induced Al Plasma[J]. Chinese Journal of Lasers, 2024, 51(5): 0511003.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!