压电与声光, 2023, 45 (6): 878, 网络出版: 2024-01-04  

改性1-3型压电复合材料理论模型与仿真

Theoretical Model and Simulation of Improved 1-3 Piezoelectric Composite
作者单位
1 北京理工大学 精密光电测试仪器及技术北京市重点实验室, 北京100081北京信息科技大学 传感器北京市重点实验室, 北京100101
2 北京理工大学 精密光电测试仪器及技术北京市重点实验室, 北京100081北京理工大学 长三角研究院, 浙江 嘉兴314001
3 北京信息科技大学 传感器北京市重点实验室, 北京100101
摘要
针对高机电耦合系数和曲面换能器的应用需求,该文提出一种由压电陶瓷、环氧树脂和硅橡胶三相复合的改进1-3型压电复合材料,基于Newnhams串、并联分析对复合材料的理论模型进行了推导,并利用Matlab进行了数值计算,分析了改性1-3型复合材料的结构参数对厚度机电耦合系数、等效密度和厚度频率常数的影响。结果表明,陶瓷-环氧复合相的体积分数为0.2~0.5,陶瓷-环氧复合相中的压电陶瓷体积分数为0.6~0.7时,改性1-3型压电复合材料的性能参数较好; 利用ANSYS软件对复合材料进行了有限元仿真,将仿真结果与理论计算进行了对比,二者具有较好的一致性,验证了理论模型评估材料性能的准确性。
Abstract
For the application requirements of high electromechanical coupling coefficient and curved surface transducers, this paper proposes an improved 1-3 piezoelectric composite composed of piezoelectric ceramics, epoxy resin, and silicone rubber three-phase composites. Based on Newnhams series, parallel analysis, the theoretical model of the composite is derived, and the numerical calculations are conducted using Matlab. The effects of structural parameters of improved 1-3 piezoelectric composite on the thickness electromechanical coupling coefficient, equivalent density, and thickness frequency constant. The results show that when the volume fraction of ceramic-epoxy composite phase ranges from 0.2 to 0.5, and when the volume fraction of piezoelectric ceramics in ceramic-epoxy composite phase ranges from 0.6 to 0.7, the improved 1-3 piezoelectric composite has better performance parameters; The finite element simulation of composites are conducted using ANSYS software. The simulation results are compared with the theoretical calculation, and showed good consistency, verifying the accuracy of the theoretical model in evaluating material properties.
参考文献

[1] 王昌,倪家升,刘小会,等.用于大坝边坡监测的光纤测斜仪设计与应用[J].传感器与微系统,2013,32(8):114-116.WANG Chang,NI Jiasheng,LIU Xiaohui,et al.Design and application of fiber inclinometer in dam slope monitoring[J].Transducer and Microsystem Technologies,2013,32(8):114-116.

[2] 杨兴明,何清平,张培仁.渗压计测量的关键技术研究[J].传感器与微系统,2011,30(11):15-17.YANG Xingming,HE Qingping,ZHANG Peiren.Research on key technology of osmometer measurement[J].Transducer and Microsystem Technologies,2011,30(11):15-17.

[3] 姜建,舒乃秋,章涛,等.基于网络传感器的大坝安全监测系统[J].传感器技术,2004(2):31-33.

[4] 瞿卫华,魏永强.基于振弦式传感器的大坝渗压监测系统设计[J].传感器与微系统,2012,31(3):106-108.QU Weihua,WEI Yongqiang.Design of dam osmotic pressure monitoring system based on vibration string sensor[J].Transducer and Microsystem Technologies,2012,31(3):106-108.

[5] 郑天翱,蔡德所,陈声震,等.多MEMS监测系统温度补偿及在猴子岩大坝应用[J].人民黄河,2020,42(5):152-156.ZHENG Tian’ao,CAI Desuo,CHEN Shengzhen,et al.Temperature compensation of multi-MEMS monitoring system and it application to Houziyandam[J].Yellow River,2020,42(5):152-156.

[6] 毛良明,施海莹.新型步进电机式大坝变形自动监测仪器[J].传感器与微系统,2006(4):55-57.MAO Liangmin,SHI Haiying.A novel stepper motor driving dam deformation monitoring instrument[J].Transducer and Microsystem Technologies,2006(4):55-57.

[7] YAJUN Z,QIAN Q.Anew type of automatic monitoring system of static and dynamic displacement on dam and slope[J].Procedia Engineering,2012,43:387-392.

[8] 徐春莺.基于MEMS 9轴传感阵列的水下地形沉降机理与监测系统研究[D].杭州:浙江大学,2019.

[9] 李程,宋胜武,陈卫东,等.基于三维电子罗盘的边坡变形监测技术研究—以溪洛渡水电站库区岸坡为例[J].岩石力学与工程学报,2019,38(1):101-110.LI Cheng,SONG Shengwu,CHEN Weidong,et al.A Monitoring method of slope deformation using three-dimensional electronic compass:an example of Xiluodu reservoir bank[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(1):101-110.

[10] 沈省三,毛良明.大坝安全监测仪器技术发展现状与展望[J].大坝与安全,2015,91(5):68-72.SHEN Xingsan,MAO Liangming.Review and prospect of the development of dam safety monitoring instrument technology[J].Dam and Safety,2015,91(5):68-72.

[11] 陈娟,徐蒙,周怡,等.大坝廊道无线传感器网络节点布局优化[J].传感器与微系统,2019,38(9):53-56.CHEN Juan,XU Meng,ZHOU Yi,et al.Nodes layout optimization of WSNs in dam corridor[J].Transducer and Microsystem Technologies,2019,38(9):53-56.

[12] 乔静,褚金奎,缪新颖,等.用于大坝安全监测的长距离WSNs节点设计[J].传感器与微系统,2012,31(5):104-106.QIAO Jing,CHU Jinkui,MIAO Xinyin,et al.Long distance WSNs nodes design for dam safety monitoring[J].Transducer and Microsystem Technologies,2012,31(5):104-106.(上接第885页)

[13] ZHANG Jinying,WANG Jiacheng,ZHONG Chao,et al.1-3-type piezoelectric composites with three-layer cascade structure[J].Composite Structures,2023,322:117406.

[14] LI Li,WANG Likun,QIN Lei,et al.The theoretical model for 1-3-2 piezoelectric composites [J],Ferroelectrics,2007,350(1):29-37.

[15] QIN Lei,ZHONG Chao,LIAO Qingwei,et al.The experimental study on 1-1-3 piezoelectric composite [J].Ferroelectrics,2018,537(1):151-160.

[16] HE Cunfu,WANG Yaoyao,LU Yan,et al.Design and Fabrication of air-based 1-3 piezoelectric composite transducer for air-coupled ultrasonic applications[J].Journal of Sensors,2016,2016(5):4982616.

[17] ROUFFAUD R,LEVASSORT F,THI M P,et al.Super-cell piezoelectric composite with 1-3 connectivity[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2016,63(12):2215-2223.

[18] CHAN H,UNSWORTH J.Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1989,36(4):434-441.

[19] IEEE 179-1961.IEEE Standards on piezoelectric crystals:Measurements of piezoelectric ceramics[S].1961.

[20] 栾桂冬,张金铎,王仁乾.压电换能器和换能器阵 [M].北京:北京大学出版社,2005.

王嘉程, 张金英, 仲超, 秦雷. 改性1-3型压电复合材料理论模型与仿真[J]. 压电与声光, 2023, 45(6): 878. WANG Jiacheng, ZHANG Jinying, ZHONG Chao, QIN Lei. Theoretical Model and Simulation of Improved 1-3 Piezoelectric Composite[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 878.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!