激光技术, 2023, 47 (5): 592, 网络出版: 2023-12-11  

Yb∶YAG晶体荧光性能的调控研究

Study on the fluorescence property tuning of Yb∶YAG crystal
作者单位
1 西南技术物理研究所, 成都 610041
2 华南理工大学 材料科学与工程学院, 广州 510641
3 四川大学 材料科学与工程学院, 成都 610064
摘要
为了对Yb∶YAG晶体荧光性能进行调控以使其更好地应用于高能脉冲型激光器, 结合密度泛函理论和晶体场理论, 对掺杂调控后的Yb∶YAG晶体的电子结构、光谱学性质进行了理论计算, 分析了不同粒子掺杂和占据格位情况下Yb∶YAG晶体的荧光性能, 并在此基础上计算配方完成晶体生长实验、制备样品进行荧光性能测试验证。结果表明, 通过以上过程掌握了Yb∶YAG晶体荧光寿命等参数的调控方法, 共掺Cr后的Yb∶YAG荧光寿命可以从1.18 ms降低至0.94 ms。该研究为Yb∶YAG晶体实现高能脉冲激光应用奠定了理论和实验基础。
Abstract
In order to tune the fluorescence performance of Yb∶YAG crystal to be better applied in high-energy pulse lasers, based on density functional theory and crystal field theory, the electronic structure and spectroscopic properties of doped Yb∶YAG crystal were theoretically calculated. The fluorescence properties of Yb∶YAG crystal under the different types and occupation sites of particle doping were analyzed. According to the theoretical results, the crystal growth experiment was carried out, and the samples were prepared to verify the fluorescence performance. The results shows that, the tuning methods of Yb∶YAG crystal fluorescence lifetime and other parameters are mastered through the above process, that is, the fluorescence lifetime of Yb∶YAG co-doped with Cr decreases from 1.18 ms to 0.94 ms. This work lays a theoretical and experimental foundation for Yb∶YAG crystal to realize the application of high-energy pulsed laser.
参考文献

[1] LIU X M,GE Y T. Analysis of development of high energy laser weapon[J]. Tactical Missile Technology, 2014(1): 5-9(in Chin-ese).

[2] XU J. Recent developments and research frontier of laser crystals[J]. Laser & Optoelectronics Progress, 2006, 43(9): 17-24(in Chin-ese).

[3] YANG P Zh, XU J, DENG P Zh, et al. Growth of Yb∶YAG crystal and its laser performance crystal[J]. Journal of Synthetic, 1998, 27(3): 229-232(in Chinese).

[4] RIPIN D J, OCHOA J R, AGGARWAL R L, et al. 165 W cryogenically cooled Yb∶YAG laser[J]. Optics Letters, 2004, 29(18): 2154-2156.

[5] SHOJI T, TOKITA Sh, KAWANAKA J, et al. Quantum-defect-limited operation of diode-pumped Yb∶YAG laser at low temperature[J]. Japanese Journal of Applied Physics, 2004, 43(4): 496-498.

[6] GUO H X, ZHANG M F,HAN J C, et al. First principles study of structural, phonon, optical, elastic and electronic properties of Y3Al5O12[J]. Physica, 2012, B407(12): 2262-2266.

[7] SUN H Y, JIANG H. Current status of theoretical approaches to rare earth luminescent materials[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(3): 350-375(in Chinese).

[8] DORENBOS P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds[J]. ECS Journal of Solid State and Technology, 2013, 2(2): R3001-R3011.

[9] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semi local exchange-correlation potential[J]. Physical Review Letters, 2009, 102(22): 226401.

[10] KOLLER D, TRAN F, BLAHA P. Merits and limits of the modified becke-johnson exchange potential[J]. Physical Review, 2011, B83(19): 195134.

[11] LARSON P, LAMBRECHT W R L, CHANTIS A, et al. Electronic structure of rare-earth nitrides using the LSDA+U approach: Important of allowing 4f orbitals to break the cubic crystal symmetry[J]. Physical Review, 2007, B75(4):045114.

[12] KULIK H J. Perspective: Treating electron over-delocalization with the DFT+U method [J]. The Journal of Chemical Physics, 2015,142(24):240901.

[13] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 mode [J]. Journal of Chemical Physics, 1999, 110(13):6158-6170.

[14] ARYASETIAWAN F, GUNNARSSON O. The GW method[J]. Reports on Progress in Physics, 1998, 61(3):237-312.

[15] SHISHKIN M, KRESSE G. Self-consistent GW calculations for semiconductors and insulators[J]. Physical Review, 2007, B75(23): 235102.

[16] JIANG H. Revisiting the GW approach to d- and f-electron oxides[J]. Physical Review, 2018, B97(24): 245132.

[17] MUNOZ A B, SEIJO L. Ce and La single- and double-substitutional defects in yttrium aluminum garnet: Frist-principles study[J]. The Journal of Physical Chemistry, 2011, A115(5): 815-823.

[18] WEN J, GU Zh D, GUO H, et al. Thermodynamic stabilities, electronic properties, and optical transitions of intrinsic defects and lanthanide ions (Ce3+, Eu2+, and Eu3+) in Li2SrSiO4[J]. Inorganic Chemistry, 2018, 57(10): 6142-6151.

[19] LUO Z D, HUANG Y D. Physics of solid laser materials[M]. Beijing: Science Press, 2015:120-132(in Chinese).

[20] HENDERSON B, IMBUSH G F. Optical spectroscopy of inorganic solids[M]. New York, USA: Oxford University Press, 2006: 230-235.

[21] JUDD B R.Optical absorption intensities of rare-earth ions[J]. Physical Review,1962,127(3):750-761.

[22] LIU H G, GNUTEK P, RUDOWICZ C. Crystal field parameters for Yb3+ ions at orthorhombic centers in garnets-revisited[J]. Journal of Luminescence, 2011, 131(12): 2690-2696.

[23] UEDA J, DORENBOS P, BOS A, et al. Insight into the thermal quenching mechanism for YAlO∶Ce3+ through thermoluminescence excitation spectroscopy[J]. Journal of Physical Chemistry, 2015, C119(44): 25003-25008.

[24] KOZIOROWSKA M, SARNECKI J, PALCZEWSKA M. Electron spin resonance study of yttrium aluminum garnet films doped with Nd and Yb ions[J]. Radiation Effects and Defects in Solids, 2003, 158(1): 299-303.

[25] GORLLER W C, BINNEMANS K. Handbook on the physics and chemistry of rare earths[M]. Amsterdam, Holland: Elsevier, 1996: 244.

[26] BURDICK G W, JAYASANKAR C K, RICHARDSON F S. Energy-level and line-strength analysis of optical transitions between stark levels in Nd3+∶Y3Al5O12[J]. Physical Review, 1994, B50(22): 16309-16325.

[27] XU J, XU X D, SU L B. Ytterbium doped laser crystal materials[M]. Shanghai: Shanghai Science Popularization Press,2005:322-334 (in Chinese).

[28] ZHANG K C. Science and technology of crystal growth[M]. Beijing: Science Press, 1997: 453-467(in Chinese).

罗辉, 梁松林, 杨永强, 牛瑞华, 钱奇, 张辉荣, 李斌, 刘虹刚. Yb∶YAG晶体荧光性能的调控研究[J]. 激光技术, 2023, 47(5): 592. LUO Hui, LIANG Songlin, YANG Yongqiang, NIU Ruihua, QIAN Qi, ZHANG Huirong, LI Bin, LIU Honggang. Study on the fluorescence property tuning of Yb∶YAG crystal[J]. Laser Technology, 2023, 47(5): 592.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!