压电与声光, 2022, 44 (4): 552, 网络出版: 2022-10-29   

压电空气耦合超声换能器制备优化及实验验证

Preparation Optimization and Experimental Verification of Piezoelectric Air-Coupled Ultrasonic Transducer
作者单位
1 中国兵器工业集团第五三研究所, 山东 济南 250031
2 华中科技大学 材料科学与工程学院 材料成形与模具技术国家重点实验室, 湖北 武汉 430074
3 中国兵器工业集团第五二研究所, 内蒙古 包头 014000
4 中国振华集团云科电子有限公司, 贵州 贵阳 550018
5 华中科技大学 光学与电子信息学院, 湖北 武汉 430074
摘要
空气耦合超声换能器作为一种无损检测(NDT)的重要设备, 具有广阔应用前景, 但由于压电元件与空气声阻抗失配导致低带宽(BW)、低灵敏度(SNS)及高双程插入损耗等缺陷而阻碍其应用。该文对空气耦合超声换能器制备工艺进行优化, 使用COMSOL软件模拟了压电元件的尺寸设计。同时通过采用1-3型压电复合元件与优化环氧树脂+空心玻璃微珠匹配层调控压电元件与空气的声阻抗, 制备了工作频率400 kHz的空气耦合换能器。在工作频率时, 该换能器的厚度振动模态较纯, 带宽较宽, 灵敏度与双程插入损耗为-38 dB。结果表明, 采用该文自研工艺制备的空气耦合超声换能器具有良好的性能与巨大应用潜力。
Abstract
As an important device for non-destructive testing (NDT), the air-coupled ultrasonic transducer has a broad application prospect, but duo to the low bandwidth (BW), low sensitivity (SNS, high two-way insertion loss (IL) and other defects resulted from the mismatch between piezoelectric element and air acoustic impedance, its application is limited. The preparation process of air-coupled ultrasonic transducer is optimized in this paper, and the dimension design of piezoelectric elements is simulated by using COMSOL. An air-coupled transducer with operating frequency of 400 kHz is fabricated through regulating the acoustic impedance of piezoelectric elements and air by using 1-3 piezoelectric composite elements with optimizing matching layers of epoxy resin+hollow glass beads.The transducer has a pure thickness at the operating frequency, a wide bandwidth, and sensitivity with a two-way insertion loss of -38 dB. The results show that the air-coupled ultrasonic transducer fabricated by the self-developed process has good performance and great application potential.
参考文献

[1] KHAIRI M T M,IBRAHIM S,YUNUS M A M,et al.Contact and non-contact ultrasonic measurement in the food industry:a review[J].Measurement Science & Technology,2016,27(1):012001.

[2] DAHL T,EALO J L,BANG H J,et al.Applications of airborne ultrasound in human-computer interaction[J].Ultrasonics,2014,54(7):1912-1921.

[3] 李骥,李力,邓勇刚,等.空气耦合超声换能器的频域声场研究[J].机械工程学报,2019,55(10):10-16.

[4] 王晓彧,吴浩东,公勋,等.多基元聚焦空气耦合超声换能器[J].应用声学,2019,38(3):287-292.

[5] 周盛.应用于地震物理模拟技术中的空气耦合超声换能器的研究[D].南京: 南京航空航天大学,2013.

[6] DING Lvhui,HUANG Qibai,XU Zhisheng,et al.The energy reflection coefficient of electrorheological fluid with continuously changing acoustic impedance[J].International Journal of Mechanics and Materials in Design,2010,6(2):135-145.

[7] 卞加聪,胡文祥,周八妹.多匹配层空气耦合压电超声换能器[J].应用声学,2018,37(1):96-100.

[8] 王晓彧.空气耦合超声换能器及其应用的研究[D].南京: 南京大学,2019.

[9] SMITH W A,AULD B A.Modeling 1-3 composite piezoelectrics:thickness-mode oscillations[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,1991,38(1):40-47.

[10] 刘大康.1-3型压电复合材料的制备与物性研究[D].济南: 山东大学,2019.

[11] ZHONG C,WANG L K,QIN L,et al.Expand bandwidth of composite transducer via matching layer design[J].Ferroelectrics Letters Section,2017,44(1/3):58-64.

董方旭, 周鑫翊, 刘发付, 凡丽梅, 高华昀, 窦占明, 段剑, 姜胜林, 张海波. 压电空气耦合超声换能器制备优化及实验验证[J]. 压电与声光, 2022, 44(4): 552. DONG Fangxu, ZHOU Xinyi, LIU Fafu, FAN Limei, GAO Huayun, DOU Zhanming, DUAN Jian, JIANG Shenglin, ZHANG Haibo. Preparation Optimization and Experimental Verification of Piezoelectric Air-Coupled Ultrasonic Transducer[J]. Piezoelectrics & Acoustooptics, 2022, 44(4): 552.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!