量子电子学报, 2023, 40 (1): 48, 网络出版: 2023-03-13  

随机散斑图正交优化计算鬼成像

Orthogonal optimization of random speckle patterns for computational ghost imaging
作者单位
阜阳师范大学信息工程学院, 安徽 阜阳 236037
摘要
为克服随机散斑图照射下统计噪声对计算鬼成像成像质量的影响, 提出了随机散斑图正交优化计算鬼成像方法。首先在计算鬼成像的基础上分析随机散斑图对目标物体重构质量的影响; 然后结合实对称矩阵性质, 通过空间映射矩阵, 将原有随机散斑图正交化; 再利用重构的正交散斑图对未知物体进行照射并由桶探测器测量, 测得的一系列桶探测器值与计算机存储的重构散斑图通过二阶关联运算对目标物体进行重构; 最后参考重构散斑图的协方差矩阵特征, 对重构结果进行补偿, 进一步提升物体重构质量。该方法不仅能有效提升随机散斑图计算鬼成像的成像质量, 同时还具有算法结构简单的特点。仿真实验结果表明: 相比于传统的随机散斑图照射下的计算鬼成像, 该方法能有效地对目标物体进行重建, 并表现出良好的性能。
Abstract
To overcome the influence of statistical noise on the reconstruction quality of computational ghost imaging under the random speckle patterns illumination, a new computational ghost imaging method based on orthogonal optimization of random speckle patterns is proposed. Firstly, the effect of random speckle patterns on the reconstruction quality of the target object is analyzed based on computational ghost imaging. Then, combining the properties of a real symmetric matrix, the original random speckle patterns are orthogonalized by a spatial mapping matrix. Further, the reconstructed orthogonal speckle patterns are used to irradiate the unknown object and the transmitted light is measured by a bucket detector. A series of measured values by bucket detectorand the reconstructed speckle patterns stored in the computer are used to reconstruct the target object through second-order correlation operation. Finally, according to the covariance matrix characteristics of the reconstructed speckle patterns, the reconstruction results are compensated to further improve the reconstruction quality of the object. This method can not only effectively improve the image quality of computational ghost imaging under the action of random speckle patterns, but also has the characteristics of simple algorithm structure. The simulation results show that the method can reconstruct the target effectively and has a good performance compared with the traditional computational ghost imaging under the illumination of random speckle patterns.
参考文献

[1] Klyshko D N. Two-photon light: Influence of filtration and a new possible EPR experiment [J]. Physics Letters A, 1988, 128(3,4): 133-137.

[2] Su F, Liu X, Long H B, et al. Sampling number of image reconstruction arithmetic based on quantum correlated imaging [J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 144-149.

[3] Shapiro J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802.

[4] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840.

[5] Ma S, Liu Z T, Wang C L, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning [J]. Optics Express, 2019, 27(9): 13219-13228.

[6] Cao F, Zhao S M. Optical encryption scheme based on computational ghost imaging with multiple wavelength light source [J]. Chinese Journal of Quantum Electronics, 2019, 3(1): 6-11.

[7] Liu X F, Yao X R, Lan R M, et al. Edge detection based on gradient ghost imaging [J]. Optics Express, 2015, 23(26): 33802-33811.

[8] Wang L, Zou L, Zhao S M. Edge detection based on subpixel-speckle-shifting ghost imaging [J]. Optics Communications, 2018, 407: 181-185.

[9] Guo H, Wei Z P, He R Y, et al. Imaging scheme of moving object based on temporal and spatial correlation [J]. Chinese Journal of Quantum Electronics, 2019, 3(4): 385-392.

[10] Li X Y, Cao F, Zhao S M. A compressive complex-valued ghost imaging theoretical scheme based on phase modulation [J]. Acta Photonica Sinica, 2014, 43(Sup 1): 0111001.

[11] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique [J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001.

[12] Yan G Q, Yang F B, Wang X X, et al. Computational ghost imaging based on orthogonal sinusoidal speckle [J]. Laser & Optoelectronics Progress, 2020, 57(4): 041019.

[13] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition [J]. Nature Communications, 2015, 6: 6225.

[14] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform [J]. Photonics Research, 2016, 4(6): 060240.

[15] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603.

[16] Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892-16901.

[17] Bai X, Li Y Q, Zhao S M. Differential compressive correlated imaging [J]. Acta Physica Sinica, 2013, 62(4): 044209.

[18] Wang M H, Zhang Z Q, Zhao S M. Performance comparison of different compressed sensing reconstruction algorithms in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 523-529.

[19] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging [J]. Scientific Reports, 2017, 7(1): 17865.

[20] Wang F, Wang H, Wang H C, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging [J]. Optics Express, 2019, 27(18): 25560-25572.

[21] Zhou D, Cao J, Jiang Y H, et al. Speckle design method based on principal component analysis [J]. Laser & Optoelectronics Progress, 2020, 57(20): 201104.

[22] Yang C, Wang C L, Guan J, et al. Scalar-matrix-structured ghost imaging [J]. Photonics Research, 2016, 4(6): 060281.

[23] Yue C, Chen P, Lv X F, et al. Object reconstruction using the binomial theorem for ghost imaging [J]. IEEE Photonics Journal, 2018, 10(6): 3901713.

郭辉, 叶知秋. 随机散斑图正交优化计算鬼成像[J]. 量子电子学报, 2023, 40(1): 48. GUO Hui, YE Zhiqiu. Orthogonal optimization of random speckle patterns for computational ghost imaging[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 48.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!