激光与光电子学进展, 2023, 60 (4): 0400001, 网络出版: 2023-02-14   

光学图像压缩加密技术研究进展 下载: 1055次封面文章特邀综述

Advances in Optical Image Compression and Encryption Methods
作者单位
1 北京工业大学理学部,北京 100124
2 南阳师范学院机电工程学院,河南 南阳 473061
引用该论文

秦怡, 满天龙, 万玉红, 王兴. 光学图像压缩加密技术研究进展[J]. 激光与光电子学进展, 2023, 60(4): 0400001.

Yi Qin, Tianlong Man, Yuhong Wan, Xing Wang. Advances in Optical Image Compression and Encryption Methods[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0400001.

参考文献

[1] Hazer A, Yıldırım R. A review of single and multiple optical image encryption techniques[J]. Journal of Optics, 2021, 23(11): 113501.

[2] Javidi B, Carnicer A, Yamaguchi M, et al. Roadmap on optical security[J]. Journal of Optics, 2016, 18(8): 083001.

[3] Liu S, Guo C L, Sheridan J T. A review of optical image encryption techniques[J]. Optics & Laser Technology, 2014, 57: 327-342.

[4] Alfalou A, Brosseau C. Optical image compression and encryption methods[J]. Advances in Optics and Photonics, 2009, 1(3): 589-636.

[5] Chen W, Javidi B, Chen X D. Advances in optical security systems[J]. Advances in Optics and Photonics, 2014, 6(2): 120-155.

[6] 吴克难, 胡家升, 乌旭. 信息安全中的光学加密技术[J]. 激光与光电子学进展, 2008, 45(7): 30-38.

    Wu K N, Hu J S, Wu X. Optical encryption for information security[J]. Laser & Optoelectronics Progress, 2008, 45(7): 30-38.

[7] 彭翔, 位恒政, 张鹏. 光学信息安全导论[M]. 北京: 科学出版社, 2008.

    PengX, WeiH Z, ZhangP. Introduction to optical security[M]. Beijing: Science Press, 2008.

[8] 鲍震杰, 薛茹. 基于自动编码器的光学图像加密方法[J]. 激光与光电子学进展, 2021, 58(22): 2210011.

    Bao Z J, Xue R. Optical image encryption method based on autoencoder[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210011.

[9] 陶冶, 祝玉鹏, 杨栋宇, 等. 基于视觉密码的远距离光学信息认证系统[J]. 光学学报, 2021, 41(16): 1607001.

    Tao Y, Zhu Y P, Yang D Y, et al. Remote optical information authentication system based on visual cryptography[J]. Acta Optica Sinica, 2021, 41(16): 1607001.

[10] 王岩, 牛宏伟. 基于光学空频域变换的自适应图像分块隐藏技术[J]. 激光与光电子学进展, 2021, 58(16): 1609001.

    Wang Y, Niu H W. Adaptive image block hiding technology based on optical spatial-frequency domain transform[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1609001.

[11] Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding[J]. Optics Letters, 1995, 20(7): 767-769.

[12] Situ G H, Zhang J J. Double random-phase encoding in the Fresnel domain[J]. Optics Letters, 2004, 29(14): 1584-1586.

[13] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain[J]. Optics Letters, 2000, 25(12): 887-889.

[14] Peng X, Zhang P, Wei H Z, et al. Known-plaintext attack on optical encryption based on double random phase keys[J]. Optics Letters, 2006, 31(8): 1044-1046.

[15] Liao M H, Zheng S S, Pan S X, et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption[J]. Opto-Electronic Advances, 2021(5): 12-23.

[16] Liu X L, Wu J C, He W Q, et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding[J]. Optics Express, 2015, 23(15): 18955-18968.

[17] Cheng X C, Cai L Z, Wang Y R, et al. Security enhancement of double-random phase encryption by amplitude modulation[J]. Optics Letters, 2008, 33(14): 1575-1577.

[18] Jiao S M, Zhuang Z Y, Zhou C Y, et al. Security enhancement of double random phase encryption with a hidden key against ciphertext only attack[J]. Optics Communications, 2018, 418: 106-114.

[19] Nomura T, Javidi B. Optical encryption using a joint transform correlator architecture[J]. Optical Engineering, 2000, 39(8): 2031-2035.

[20] Clemente P, Durán V, Torres-Company V, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 2010, 35(14): 2391-2393.

[21] Zhang Y, Wang B. Optical image encryption based on interference[J]. Optics Letters, 2008, 33(21): 2443-2445.

[22] Javidi B, Nomura T. Securing information by use of digital holography[J]. Optics Letters, 2000, 25(1): 28-30.

[23] Shi Y S, Li T, Wang Y L, et al. Optical image encryption via ptychography[J]. Optics Letters, 2013, 38(9): 1425-1427.

[24] Maniccam S S, Bourbakis N G. Lossless image compression and encryption using SCAN[J]. Pattern Recognition, 2001, 34(6): 1229-1245.

[25] Zhou N R, Zhang A D, Zheng F, et al. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing[J]. Optics & Laser Technology, 2014, 62: 152-160.

[26] Schonberg D, Draper S C, Yeo C, et al. Toward compression of encrypted images and video sequences[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(4): 749-762.

[27] Zhang X P, Ren Y L, Shen L Q, et al. Compressing encrypted images with auxiliary information[J]. IEEE Transactions on Multimedia, 2014, 16(5): 1327-1336.

[28] Situ G H, Zhang J J. Multiple-image encryption by wavelength multiplexing[J]. Optics Letters, 2005, 30(11): 1306-1308.

[29] DuránV, ClementeP, Torres-CompanyV, et al. Optical encryption with compressive ghost imaging[C]‍∥2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, May 22-26, 2011, Munich, Germany. New York: IEEE Press, 2011.

[30] Naughton T J, Javidi B. Compression of encrypted three-dimensional objects using digital holography[J]. Optical Engineering, 2004, 43(10): 2233-2238.

[31] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.

[32] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

[33] Georgi P, Wei Q S, Sain B, et al. Optical secret sharing with cascaded metasurface holography[J]. Science Advances, 2021, 7(16): eabf9718.

[34] Li Q, Meng X, Yin Y, et al. A multi-image encryption based on sinusoidal coding frequency multiplexing and deep learning[J]. Sensors, 2021, 21(18): 6178.

[35] Trejos S, Barrera J F, Velez A, et al. Optical approach for the efficient data volume handling in experimentally encrypted data[J]. Journal of Optics, 2016, 18(6): 065702.

[36] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform[J]. IEEE Transactions on Computers, 1974, C-23(1): 90-93.

[37] SayoodK. Introduction to data compression[M]. San Francisco: Morgan Kaufmann, 2017.

[38] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109.

[39] 杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.

    Yang G Z, Gu B Y. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.

[40] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

[41] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.

[42] Liu Z J, Zhang Y, Zhao H F, et al. Optical multi-image encryption based on frequency shift[J]. Optik, 2011, 122(11): 1010-1013.

[43] Deng P K, Diao M, Shan M G, et al. Multiple-image encryption using spectral cropping and spatial multiplexing[J]. Optics Communications, 2016, 359: 234-239.

[44] Alfalou A, Brosseau C. Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption[J]. Optics Letters, 2010, 35(11): 1914-1916.

[45] Alfalou A, Brosseau C, Abdallah N. Simultaneous compression and encryption of color video images[J]. Optics Communications, 2015, 338: 371-379.

[46] Alfalou A, Brosseau C, Abdallah N, et al. Simultaneous fusion, compression, and encryption of multiple images[J]. Optics Express, 2011, 19(24): 24023-24029.

[47] Jridi M, Alfalou A. Real-time and encryption efficiency improvements of simultaneous fusion, compression and encryption method based on chaotic generators[J]. Optics and Lasers in Engineering, 2018, 102: 59-69.

[48] Qin Y, Gong Q, Wang Z P, et al. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation[J]. Optics Express, 2016, 24(23): 26877-26886.

[49] Ngo N Q. Optical chirp z-transform processor: design and application[J]. Journal of Lightwave Technology, 2015, 33(11): 2213-2221.

[50] Mosso E, Bolognini N. Dynamic multiple-image encryption based on chirp z-transform[J]. Journal of Optics, 2019, 21(3): 035704.

[51] Mosso E, Suárez O, Bolognini N. Asymmetric multiple-image encryption system based on a chirp z-transform[J]. Applied Optics, 2019, 58(21): 5674-5680.

[52] Wu J J, Li S W. Optical multiple-image compression-encryption via single-pixel Radon transform[J]. Applied Optics, 2020, 59(31): 9744-9754.

[53] Qin W, Peng X. Asymmetric cryptosystem based on phase-truncated Fourier transforms[J]. Optics Letters, 2010, 35(2): 118-120.

[54] Zhang L H, Wang Y, Zhang D W. Research on multiple-image encryption mechanism based on Radon transform and ghost imaging[J]. Optics Communications, 2022, 504: 127494.

[55] Lu P, Xu Z Y, Lu X, et al. Digital image information encryption based on compressive sensing and double random-phase encoding technique[J]. Optik, 2013, 124(16): 2514-2518.

[56] Liu X Y, Cao Y P, Lu P, et al. Optical image encryption technique based on compressed sensing and Arnold transformation[J]. Optik, 2013, 124(24): 6590-6593.

[57] Wang J, Wang Q H, Hu Y H. Image encryption using compressive sensing and detour cylindrical diffraction[J]. IEEE Photonics Journal, 2018, 10(3): 7801014.

[58] Deepan B, Quan C, Wang Y, et al. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique[J]. Applied Optics, 2014, 53(20): 4539-4547.

[59] Zhou N R, Li H L, Wang D, et al. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform[J]. Optics Communications, 2015, 343: 10-21.

[60] Yi J W, Tan G Z. Optical compression and encryption system combining multiple measurement matrices with fractional Fourier transform[J]. Applied Optics, 2015, 54(36): 10650-10658.

[61] Yang X L, Wu H Z, Yin Y K, et al. Multiple-image encryption base on compressed coded aperture imaging[J]. Optics and Lasers in Engineering, 2020, 127: 105976.

[62] Ni R J, Wang F, Wang J, et al. Multi-image encryption based on compressed sensing and deep learning in optical gyrator domain[J]. IEEE Photonics Journal, 2021, 13(3): 7800116.

[63] Situ G, Zhang J. Position multiplexing for multiple-image encryption[J]. Journal of Optics A: Pure and Applied Optics, 2006, 8(5): 391-397.

[64] Amaya D, Tebaldi M, Torroba R, et al. Digital color encryption using a multi-wavelength approach and a joint transform correlator[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(10): 104031.

[65] Amaya D, Tebaldi M, Torroba R, et al. Wavelength multiplexing encryption using joint transform correlator architecture[J]. Applied Optics, 2009, 48(11): 2099-2104.

[66] Qin Y, Gong Q. Interference-based multiple-image encryption with silhouette removal by position multiplexing[J]. Applied Optics, 2013, 52(17): 3987-3992.

[67] Xiao Y L, Su X Y, Li S K, et al. Key rotation multiplexing for multiple-image optical encryption in the Fresnel domain[J]. Optics & Laser Technology, 2011, 43(4): 889-894.

[68] Rueda E, Ramírez J F B, Henao R H, et al. Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture[J]. Optical Engineering, 2009, 48(2): 027006.

[69] Chen Q, Shen X J, Dou S F, et al. Topological charge number multiplexing for JTC multiple-image encryption[J]. Optics Communications, 2018, 412: 155-160.

[70] Shi Y Y, Liu Y W, Sheng W, et al. Multiple-image double-encryption via 2D rotations of a random phase mask with spatially incoherent illumination[J]. Optics Express, 2019, 27(18): 26050-26059.

[71] Mosso F, Barrera J F, Tebaldi M, et al. All-optical encrypted movie[J]. Optics Express, 2011, 19(6): 5706-5712.

[72] He W Q, Peng X, Meng X F. Optical multiple-image hiding based on interference and grating modulation[J]. Journal of Optics, 2012, 14(7): 075401.

[73] Qin Y, Wang Z P, Pan Q N, et al. Optical color-image encryption in the diffractive-imaging scheme[J]. Optics and Lasers in Engineering, 2016, 77: 191-202.

[74] Shen X J, Lin C, Kong D Z. Fresnel-transform holographic encryption based on angular multiplexing and random-amplitude mask[J]. Optical Engineering, 2012, 51(6): 068201.

[75] Xi S X, Yu N N, Wang X L, et al. Optical encryption scheme for multiple-image based on spatially angular multiplexing and computer generated hologram[J]. Optics and Lasers in Engineering, 2020, 127: 105953.

[76] Li W, Chang X Y, Yan A M, et al. Asymmetric multiple image elliptic curve cryptography[J]. Optics and Lasers in Engineering, 2021, 136: 106319.

[77] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

[78] Lucas A, Iliadis M, Molina R, et al. Using deep neural networks for inverse problems in imaging: beyond analytical methods[J]. IEEE Signal Processing Magazine, 2018, 35(1): 20-36.

[79] DongC, DengY B, LoyC C, et al. Compression artifacts reduction by a deep convolutional network[C]‍∥2015 IEEE International Conference on Computer Vision, December 7-13, 2015, Santiago, Chile. New York: IEEE Press, 2015: 576-584.

[80] Jiao S M, Jin Z, Chang C L, et al. Compression of phase-only holograms with JPEG standard and deep learning[J]. Applied Sciences, 2018, 8(8): 1258.

[81] Shimobaba T, Blinder D, Makowski M, et al. Dynamic-range compression scheme for digital hologram using a deep neural network[J]. Optics Letters, 2019, 44(12): 3038-3041.

[82] Qin Y, Wan Y H, Wan S J, et al. Optical compressive encryption via deep learning[J]. IEEE Photonics Journal, 2021, 13(4): 7800208.

[83] Yuan S, Yang Y R, Liu X M, et al. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging[J]. Optics and Lasers in Engineering, 2018, 100: 105-110.

[84] Zhu J N, Yang X L, Meng X F, et al. Optical image encryption scheme with multiple light paths based on compressive ghost imaging[J]. Journal of Modern Optics, 2018, 65(3): 306-313.

[85] Zhang C G, Han B N, He W Q, et al. A novel compressive optical encryption via single-pixel imaging[J]. IEEE Photonics Journal, 2019, 11(4): 7801208.

[86] Zhao S M, Wang L, Liang W Q, et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 2015, 353: 90-95.

[87] Zhang L H, Pan Z L, Wu L Y, et al. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform[J]. Optics and Lasers in Engineering, 2016, 86: 329-337.

[88] Li X Y, Meng X F, Yang X L, et al. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme[J]. Optics and Lasers in Engineering, 2018, 102: 106-111.

[89] Li X Y, Meng X F, Yang X L, et al. Multiple-image encryption based on compressive ghost imaging and coordinate sampling[J]. IEEE Photonics Journal, 2016, 8(4): 3900511.

[90] Li J, Li J S, Pan Y Y, et al. Compressive optical image encryption[J]. Scientific Reports, 2015, 5: 10374.

[91] Li J, Jia B, Dai X, et al. Compressive optical image encryption using phase-shifting interferometry on a joint transform correlator[J]. Optica Applicata, 2017, 47(2): 245-256.

[92] Li J, Li H B, Li J S, et al. Compressive optical image encryption with two-step-only quadrature phase-shifting digital holography[J]. Optics Communications, 2015, 344: 166-171.

[93] Chen W, Chen X D. Optical multiple-image encryption based on multiplane phase retrieval and interference[J]. Journal of Optics, 2011, 13(11): 115401.

[94] Chen W. Optical multiple-image encryption using three-dimensional space[J]. IEEE Photonics Journal, 2016, 8(2): 6900608.

[95] Lü W J, Sun X K, Yang D Y, et al. Optical multiple information hiding via azimuth multiplexing[J]. Optics and Lasers in Engineering, 2021, 141: 106574.

[96] Lu Z, Lü W J, Zhu Y P, et al. Optical information encryption based on partially-update iterative system with azimuth multiplexing[J]. Optics Communications, 2022, 510: 127899.

[97] Wu J J, Wang J C, Nie Y G, et al. Multiple-image optical encryption based on phase retrieval algorithm and fractional Talbot effect[J]. Optics Express, 2019, 27(24): 35096-35107.

[98] Xiao Y L, Zhou X, Yuan S, et al. Multiple-image optical encryption: an improved encoding approach[J]. Applied Optics, 2009, 48(14): 2686-2692.

[99] Huang J J, Hwang H E, Chen C Y, et al. Lensless multiple-image optical encryption based on improved phase retrieval algorithm[J]. Applied Optics, 2012, 51(13): 2388-2394.

[100] Liu Z J, Liu S T. Double image encryption based on iterative fractional Fourier transform[J]. Optics Communications, 2007, 275(2): 324-329.

[101] 李天佑, 黄玲玲, 王涌天. 超颖表面原理与研究进展[J]. 中国光学, 2017, 10(5): 523-540, 701.

    Li T Y, Huang L L, Wang Y T. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5): 523-540, 701.

[102] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[103] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 2018, 7: 95.

[104] Zhou H Q, Sain B, Wang Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553-5559.

[105] Chen W, Chen X D, Sheppard C J R. Optical image encryption based on diffractive imaging[J]. Optics Letters, 2010, 35(22): 3817-3819.

[106] Chen W, Chen X D, Anand A, et al. Optical encryption using multiple intensity samplings in the axial domain[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2013, 30(5): 806-812.

[107] Qin Y, Gong Q, Wang Z P. Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme[J]. Optics Express, 2014, 22(18): 21790-21799.

[108] Bao P, Zhang F C, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4): 309-311.

[109] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13-21.

[110] He X L, Jiang Z L, Kong Y, et al. Optical multi-image encryption based on focal length multiplexing and multimode phase retrieval[J]. Applied Optics, 2020, 59(26): 7801-7812.

[111] He X L, Tao H, Liu C, et al. Single-shot color image encryption based on mixed state diffractive imaging[J]. Optics and Lasers in Engineering, 2018, 107: 112-118.

[112] He X L, Tao H, Jiang Z L, et al. Single-shot optical multiple-image encryption by jointly using wavelength multiplexing and position multiplexing[J]. Applied Optics, 2019, 59(1): 9-15.

[113] Di H, Zheng K F, Zhang X, et al. Multiple-image encryption by compressive holography[J]. Applied Optics, 2012, 51(7): 1000-1009.

[114] Wan Y H, Wu F, Yang J H, et al. Multiple-image encryption based on compressive holography using a multiple-beam interferometer[J]. Optics Communications, 2015, 342: 95-101.

[115] Zhang Y S, Zhang L Y. Exploiting random convolution and random subsampling for image encryption and compression[J]. Electronics Letters, 2015, 51(20): 1572-1574.

[116] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056.

[117] Wang B, Sun C C, Su W C, et al. Shift-tolerance property of an optical double-random phase-encoding encryption system[J]. Applied Optics, 2000, 39(26): 4788-4793.

[118] Rueda E, Rios C, Barrera J F, et al. Experimental multiplexing approach via code key rotations under a joint transform correlator scheme[J]. Optics Communications, 2011, 284(10/11): 2500-2504.

[119] Barrera J F, Tebaldi M, Ríos C, et al. Experimental multiplexing of encrypted movies using a JTC architecture[J]. Optics Express, 2012, 20(4): 3388-3393.

[120] Dou S F, Shen X J, Zhou B, et al. Experimental research on optical image encryption system based on joint Fresnel transform correlator[J]. Optics & Laser Technology, 2019, 112: 56-64.

秦怡, 满天龙, 万玉红, 王兴. 光学图像压缩加密技术研究进展[J]. 激光与光电子学进展, 2023, 60(4): 0400001. Yi Qin, Tianlong Man, Yuhong Wan, Xing Wang. Advances in Optical Image Compression and Encryption Methods[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0400001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!