硅酸盐通报, 2022, 41 (11): 4049, 网络出版: 2022-12-26  

玻璃与水的相互作用过程和机理探索

Interaction Process and Reaction Mechanisms Between Glass and Water
作者单位
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 中航光电科技股份有限公司,洛阳 471003
3 中国科学院上海光学精密机械研究所,上海 201800
摘要
玻璃经常在溶液或者潮湿环境下使用,水的侵蚀会影响玻璃的物理和化学性质,甚至导致玻璃失效。近年来,通过采用多尺度计算机模拟方法,对简单玻璃体系与水相互作用过程和分子尺度反应机理的认识取得了较大进展。本文聚焦石英玻璃、钠硅玻璃和钠硼硅玻璃三个简单的模型玻璃体系,在阐明其耐水性起源的基础上,概述了玻璃与水分子相互作用过程和机理的最新进展,对进一步理解复杂体系玻璃的耐水性和开发新的功能玻璃具有重要的参考价值。
Abstract
Glass is often used in solution or moist environment, water erosion will affect the physical and chemical properties of glass, and even lead to glass failure. In recent years, great progress has been made in understanding the interaction process and molecular scale reaction mechanism of simple glass systems with water by using multiscale computer simulation. This paper focuses on three simple models glass systems: quartz glass, sodium silicate glass and sodium borosilicate glass. On the basis of elucidating the origin of its water resistance, the latest progress in the interaction process and mechanism between glass and water molecules were summarized. It has important reference value for further understanding water resistance of complex system glass and developing new functional glass.
参考文献

[1] HATHERINGTON G. Water in vitreous silica Part 1. Influence of water content on the properties of vitreous silica[J]. Physics & Chemistry of Glasses, 1962(34): 129133.

[2] PIERCE E M, FRUGIER P, CRISCENTI L J, et al. Modeling interfacial glasswater reactions: recent advances and current limitations[J]. International Journal of Applied Glass Science, 2014, 5(4): 421435.

[3] REBISCOUL D, FRUGIER P, GIN S, et al. Protective properties and dissolution ability of the gel formed during nuclear glass alteration[J]. Journal of Nuclear Materials, 2005, 342(1/2/3): 2634.

[4] REBISCOUL D, VAN DER LEE A, RIEUTORD F, et al. Morphological evolution of alteration layers formed during nuclear glass alteration: new evidence of a gel as a diffusive barrier[J]. Journal of Nuclear Materials, 2004, 326(1): 918.

[5] GIN S, JOLLIVET P, FOURNIER M, et al. Origin and consequences of silicate glass passivation by surface layers[J]. Nature Communications, 2015, 6: 6360.

[6] DAVIS K M, TOMOZAWA M. Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity[J]. Journal of NonCrystalline Solids, 1995, 185(3): 203220.

[7] KURODA M, TACHIBANA S, SAKAMOTO N, et al. Water diffusion in silica glass through pathways formed by hydroxyls[J]. American Mineralogist, 2018, 103(3): 412417.

[8] AMMA S I, KIM S H, PANTANO C G. Analysis of water and hydroxyl species in soda lime glass surfaces using attenuated total reflection (ATR)IR spectroscopy[J]. Journal of the American Ceramic Society, 2016, 99(1): 128134.

[9] GEISLER T, DOHMEN L, LENTING C, et al. Realtime in situ observations of reaction and transport phenomena during silicate glass corrosion by fluidcell Raman spectroscopy[J]. Nature Materials, 2019, 18(4): 342348.

[10] GIN S, MIR A H, JAN A, et al. A general mechanism for gel layer formation on borosilicate glass under aqueous corrosion[J]. The Journal of Physical Chemistry C, 2020, 124(9): 51325144.

[11] AMMA S I, LUO J W, KIM S H, et al. Effect of glass composition on the hardness of surface layers on aluminosilicate glasses formed through reaction with strong acid[J]. Journal of the American Ceramic Society, 2018, 101(2): 657665.

[12] GIN S. Open scientific questions about nuclear glass corrosion[J]. Procedia Materials Science, 2014, 7: 163171.

[13] GIN S, BEAUDOUX X, ANGLI F, et al. Effect of composition on the shortterm and longterm dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides[J]. Journal of NonCrystalline Solids, 2012, 358(18/19): 25592570.

[14] LIU H S, HAHN S H, REN M G, et al. Searching for correlations between vibrational spectral features and structural parameters of silicate glass network[J]. Journal of the American Ceramic Society, 2020, 103(6): 35753589.

[15] LIU H S, NGO D, REN M G, et al. Effects of surface initial condition on aqueous corrosion of glass: a study with a model nuclear waste glass[J]. Journal of the American Ceramic Society, 2019, 102(4): 16521664.

[16] NGO D, LIU H, CHEN Z, et al. O and SiOH on a boroaluminosilicate glass corroded in aqueous solution[J]. npj Materials Degradation, 2020, 4: 114.

[17] DU J C, RIMSZA J M. Atomistic computer simulations of water interactions and dissolution of inorganic glasses[J]. Npj Materials Degradation, 2017, 1: 16.

[18] MAHADEVAN T S, SUN W, DU J C. Development of water reactive potentials for sodium silicate glasses[J]. The Journal of Physical Chemistry B, 2019, 123(20): 44524461.

[19] RIMSZA J M, DU J C. Interfacial structure and evolution of the watersilica gel system by reactive forcefieldbased molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2017, 121(21): 1153411543.

[20] BENNETT P, MELCER M E, SIEGEL D, et al. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52: 15211530.

[21] RIMSTIDT J D. Rate equations for sodium catalyzed quartz dissolution[J]. Geochimica et Cosmochimica Acta, 2015, 167: 195204.

[22] CRUNDWELL F K. On the mechanism of the dissolution of quartz and silica in aqueous solutions[J]. ACS Omega, 2017, 2(3): 11161127.

[23] DAVIS K M, TOMOZAWA M. An infrared spectroscopic study of waterrelated species in silica glasses[J]. Journal of NonCrystalline Solids, 1996, 201(3): 177198.

[24] MAHADEVAN T S, GAROFALINI S H. Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions[J]. The Journal of Physical Chemistry C, 2008, 112(5): 15071515.

[25] STERPENICH J, LIBOUREL G. Water diffusion in silicate glasses under natural weathering conditions: evidence from buried medieval stained glasses[J]. Journal of NonCrystalline Solids, 2006, 352(50/51): 54465451.

[26] DENG L, MIYATANI K, AMMA S I, et al. Reaction mechanisms and interfacial behaviors of sodium silicate glass in an aqueous environment from reactive force fieldbased molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2019, 123(35): 2153821547.

[27] DENG L, MIYATANI K, SUEHARA M, et al. Ionexchange mechanisms and interfacial reaction kinetics during aqueous corrosion of sodium silicate glasses[J]. Npj Materials Degradation, 2021, 5: 15.

[28] GENESTE G, BOUYER F, GIN S. Hydrogensodium interdiffusion in borosilicate glasses investigated from first principles[J]. Journal of NonCrystalline Solids, 2006, 352(28/29): 31473152.

[29] ZAPOL P, HE H Y, KWON K D, et al. Firstprinciples study of hydrolysis reaction barriers in a sodium borosilicate glass[J]. International Journal of Applied Glass Science, 2013, 4(4): 395407.

[30] GEORGE J L, BROW R K. Insitu characterization of borate glass dissolution kinetics by μRaman spectroscopy[J]. Journal of NonCrystalline Solids, 2015, 426: 116124.

[31] COLLIN M, FOURNIER M, FRUGIER P, et al. Structure of international simple glass and properties of passivating layer formed in circumneutral pH conditions[J]. npj Materials Degradation, 2018, 2: 4.

[32] JABRAOUI H, CHARPENTIER T, GIN S, et al. Atomic insights into the events governing the borosilicate glasswater interface[J].The Journal of Physical Chemistry C, 2021, 125(14): 79197931.

魏子雅, 顾少轩, 王晓伟, 邓路, 陶海征. 玻璃与水的相互作用过程和机理探索[J]. 硅酸盐通报, 2022, 41(11): 4049. WEI Ziya, GU Shaoxuan, WANG Xiaowei, DENG Lu, TAO Haizheng. Interaction Process and Reaction Mechanisms Between Glass and Water[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4049.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!