应用激光, 2023, 43 (3): 0090, 网络出版: 2024-01-27  

纯铜微尺度激光冲击强化过程数值模拟研究

Study on Numerical Simulation of Micro-Scale Laser Shock Peening of Pure Copper
作者单位
1 山东理工大学激光高端制造研究中心, 山东 淄博 255000
2 山东理工大学机械工程学院, 山东 淄博 255000
3 山东理工大学材料科学与工程学院, 山东 淄博 255000
摘要
借助ABAQUS软件建立了微尺度激光冲击强化(micro-scale laser shock peening, μLSP)过程的有限元模型, 对T2纯铜的μLSP过程进行了数值模拟, 分析了μLSP过程中纯铜的位移、塑性应变和等效应力的动态响应情况以及残余应力的分布规律。结果表明, 冲击波作用到纯铜表面后, 极短时间内便可达到纯铜的动态屈服极限。纯铜表面的位移影响区域直径约为激光光斑的2倍, 并在27 ns时达到位移最大值约0.85 μm。随着冲击波压力的加载, 纯铜产生加工硬化, 塑性应变和等效应力的最大值均出现在加载区域内部的近表层处, 分别约为0.062 MPa和297 MPa。μLSP后纯铜表面激光辐照区域主要表现为残余压应力, 最大值约为199 MPa, 影响深度达40 μm。在激光辐照区域表面边缘存在一定的残余拉应力, 产生“残余应力洞”。同时, μLSP工艺试验结果与数值模拟结果基本一致, 从而验证有限元模型的合理性与可靠性。
Abstract
A finite element model of micro-scale laser shock peening (μLSP) was established utilizing ABAQUS.Process of μLSP of T2 pure copper was numerically simulated. The dynamic response of displacement, plastic strain, and equivalent stress as well as the distribution rule of residual stress during μLSP were analyzed. The results show that the dynamic yield limit of copper can be reached in a very short time after the shock wave acting at the surface. The diameter of the displacement-affected region at the surface of copper is about twice the laser spot diameter, and the maximum displacement of around 0.85 μm is achieved at 27 ns. With the increase of shock wave pressure, work hardening occurs in copper, and the maximum plastic strain and equivalent stress of about 0.062 and 297 MPa appear at the near-surface of the loaded region. The laser irradiated region of copper mainly shows residual compressive stress after μLSP which is about 199 MPa and has an influence depth of 40 μm. Residual tensile stress exists at the edge of laser irradiated region, indicating the appearance of “residual stress hole”. Meanwhile, the experimental results of μLSP are basically consistent with the numerical simulation results, which verify the reasonability and reliability of the finite element model.
参考文献

[1] FAUDZI A A M, SABZEHMEIDANI Y, SUZUMORI K. Application of micro-electro-mechanical systems (MEMS) as sensors: A review[J]. Journal of Robotics and Mechatronics, 2020, 32(2): 281-288.

[2] PATTANAIK P, OJHA M. Review on challenges in MEMS technology[J]. Materials Today: Proceedings, 2021

[3] 王振禄, 张九娥, 董丽梅. 基于MEMS工艺的微机械失效分析研究进展[J]. 半导体技术, 2017, 42(7): 481-488.WANG Z L, ZHANG J E, DONG L M. Review on the micromechanical failure analysis based on MEMS process[J]. Semiconductor Technology, 2017, 42(7): 481-488.

[4] LI Y Q, SUN Y F, HU W W, et al. A novel correlative model of failure mechanisms for evaluating MEMS devices reliability[J]. Microelectronics Reliability, 2016, 64: 669-675.

[5] MERLIJN VAN SPENGEN W. MEMS reliability from a failure mechanisms perspective[J]. Microelectronics Reliability, 2003, 43(7): 1049-1060.

[6] SAGHAEIAN F, LEDERER M, HOFER A, et al. Investigation of high cyclic fatigue behaviour of thin copper films using MEMS structure[J]. International Journal of Fatigue, 2019, 128: 105179.

[7] 曾镜灵, 林超辉, 刘俊, 等. 激光斜冲击强化对GH4169高温合金表面质量的影响[J]. 应用激光, 2021, 41(6): 1271-1279.ZENG J L, LIN C H, LIU J, et al. Effect of laser oblique shock peening on surface quality of GH4169 superalloy[J]. Applied Laser, 2021, 41(6): 1271-1279.

[8] 刘玮, 李志南, 李国强, 等. 激光喷丸强化轴承用CuNiCrSi合金残余应力及疲劳裂纹分析[J]. 应用激光, 2020, 40(2): 232-237.LIU W, LI Z N, LI G Q, et al. Residual stress and fatigue crack analysis of CuNiCrSi alloy for laser shot peening strengthened bearings[J]. Applied Laser, 2020, 40(2): 232-237.

[9] 宋亚杰, 张胜泉, 吴东. 激光冲击强化对激光增材GH1131合金薄壁件表面完整性的影响[J]. 应用激光, 2020, 40(3): 447-453.SONG Y J, ZHANG S Q, WU D. Effect of laser shock peeing on surface integrity of laser additive manufactured GH1131 alloy thin-walled components[J]. Applied Laser, 2020, 40(3): 447-453.

[10] 熊飞. 微尺度激光冲击加工可控表面形貌的成形机制及其性能研究[D]. 徐州: 中国矿业大学, 2020.XIONG F. Research on forming mechanism and properties of micro-scale controllable surface morphology by laser shock processing[D].Xuzhou: China University of Mining and Technology, 2020.

[11] 张凯. 微金属件激光冲击无模具成形工艺和理论研究[D]. 镇江: 江苏大学, 2018.ZHANG K. Research on the process and theory of dieless laser shock forming of micro metal parts[D]. Zhenjiang: Jiangsu University, 2018.

[12] 卫登辉. 微尺度激光喷丸强化TiN薄膜的响应及力学性能研究[D]. 镇江: 江苏大学, 2011.WEI D H. Study on response and mechanical properties of TiN film under microscale laser shock peening[D]. Zhenjiang: Jiangsu University, 2011.

[13] KARTHIK D, SWAROOP S. Laser peening without coating-An advanced surface treatment: A review[J]. Materials and Manufacturing Processes, 2017, 32(14): 1565-1572.

[14] 王敏. 微尺度激光喷丸强化材料的响应及力学性能研究[D]. 镇江: 江苏大学, 2010.WANG M. Study on response and mechanical properties of material after micro-scale laser shot peening[D]. Zhenjiang: Jiangsu University, 2010.

[15] 吴尚霖, 鞠康, 段春争, 等. 细晶T2纯铜动态力学性能及本构模型[J]. 工具技术, 2019, 53(11): 16-20.WU S L, JU K, DUAN C Z, et al. Dynamic mechanical properties and constitutive model of fine-grained T2copper[J]. Tool Engineering, 2019, 53(11): 16-20.

[16] 闾家阳, 王永军, 王俊彪, 等. 2024-T351铝合金方形光斑激光喷丸残余应力场数值模拟[J]. 锻压技术, 2021, 46(5): 79-85.L J Y, WANG Y J, WANG J B, et al. Numerical simulation on residual stress field in laser peening with a square spot for 2024-T351 aluminum alloy[J]. Forging & Stamping Technology, 2021, 46(5): 79-85.

[17] ZHU W, ZHOU J Z, WANG M, et al. Study on the numerical simulation and statistical optimization of micro-scale laser shock peening[J]. Journal of Computational and Theoretical Nanoscience, 2012, 9(9): 1399-1403.

[18] SHIGANOV I, MELNIKOV D, MISYUROV A, et al. Investigation the effect of laserablation parameters in a liquid in order to reduce the pulse energy during laser shock peening[J]. Optical and Quantum Electronics, 2020, 52(4): 203.

[19] AYEB M, FRIJA M, FATHALLAH R. Prediction of residual stress profile and optimization of surface conditions induced by laser shock peening process using artificial neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(9): 2455-2471.

[20] 乔红超. 激光冲击强化对6082铝合金机械性能的影响[J]. 激光与光电子学进展, 2015, 52(6): 061404.QIAO H C. Effect of laser peening on mechanical properties of 6082 aluminum alloy[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061404.

[21] HU Y X, LI K M, QI C J, et al. Size effect on indentation depth of oxygen-free high purity copper induced by laser shock processing[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: s573-s578.

[22] 舒波超, 李卫东, 黄遐, 等. 铝合金材料激光冲击喷丸力学响应有限元建模[J]. 航空制造技术, 2020, 63(3): 59-66.SHU B C, LI W D, HUANG X, et al. Finite element modeling of mechanical response of aluminum alloy materials by laser shock peening[J]. Aeronautical Manufacturing Technology, 2020,63(3): 59-66.

[23] 王学德, 聂祥樊, 臧顺来, 等. 激光冲击强化“残余应力洞”的形成机制[J]. 强激光与粒子束, 2014, 26(11): 306-310.WANG X D, NIE X F, ZANG S L, et al. Formation mechanism of“residual stress hole”induced by laser shock peening[J]. High Power Laser and Particle Beams, 2014, 26(11): 306-310.

[24] MAN J X, YANG H F, WANG Y F, et al. Study on controllable surface morphology of the micro-pattern fabricated on metallic foil by laser shock imprinting[J]. Optics & Laser Technology, 2019, 119: 105669.

[25] ADU-GYAMFI S, REN X D, LARSON E A, et al. The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy[J]. Optics & Laser Technology, 2018, 108: 177-185.

[26] 聂祥樊, 魏晨, 侯志伟, 等. 激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能[J]. 航空动力学报, 2021, 36(1): 137-147.NIE X F, WEI C, HOU Z W, et al. Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shockpeening[J]. Journal of Aerospace Power, 2021, 36(1): 137-147.

[27] 曹宇鹏, 徐影, 冯爱新, 等. 激光冲击强化7050铝合金薄板表面残余应力形成机制的实验研究[J]. 中国激光, 2016, 43(7): 0702008.CAO Y P, XU Y, FENG A X, et al. Experimental study of residual stress formation mechanism of 7050Aluminum alloy sheet by laser shock processing[J]. Chinese Journal of Lasers, 2016, 43(7): 0702008.

[28] DAI F Z, LU J Z, ZHANG Y K, et al. Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations[J]. Applied Surface Science, 2014, 316: 477-483.

[29] GUO Y B, CASLARU R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces[J]. Journal of Materials Processing Technology, 2011, 211(4): 729-736.

[30] DE BONIS A, SANSONE M, D′ALESSIO L, et al. Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid[J]. Journal of Physics D: Applied Physics, 2013, 46(44): 445301.

陈磊, 王宗申, 郑宏宇, 朱立华, 于文慧, 高珊. 纯铜微尺度激光冲击强化过程数值模拟研究[J]. 应用激光, 2023, 43(3): 0090. Chen Lei, Wang Zongshen, Zheng Hongyu, Zhu Lihua, Yu Wenhui, Gao Shan. Study on Numerical Simulation of Micro-Scale Laser Shock Peening of Pure Copper[J]. APPLIED LASER, 2023, 43(3): 0090.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!