应用激光, 2019, 39 (4): 602, 网络出版: 2019-10-12  

孵化效应对超快激光诱导金属钛表面周期结构的形貌影响

Effects of Incubation on Morphology Changes of Subwavelength Ripples Induced by Ultrafast Laser
作者单位
1 北京工业大学激光工程研究院, 北京 100124
2 北京工业大学北京市激光应用技术工程研究中心, 北京 100124
摘要
通过实验研究了超快激光诱导亚波长周期结构表面形貌的变化和调控, 利用1 064 nm皮秒激光和800 nm飞秒激光辐照金属钛, 通过改变脉冲个数和激光辐照方式, 研究孵化效应在亚波长表面周期结构产生过程中的影响。研究发现: 1)亚波长周期结构区域、烧蚀区域和亚波长表面结构周期均随着皮秒激光脉冲个数的增加而增大, 但是增加相同的脉冲个数, 因孵化效应的作用使其增幅不同; 2)改变激光辐照方式可有效增大亚波长表面周期结构面积的同时可制备更精细的亚波长周期结构: 亚波长周期结构区域和烧蚀区域直径在辐照方式为N=500+1000和N=1000+500情况下均有增大, 同时前序脉冲个数较少后序脉冲个数较多的情况下(如N=500+1000), 增幅更大; N=500+1000和N=1000+500辐照情况下其亚波长表面周期小于N=1500的情况。由此可知, 综合考虑脉冲个数、激光辐照方式和孵化效应的影响, 通过分序两步法可有效调控亚波长表面周期结构的形貌, 提高亚波长表面周期结构的制备效率和质量, 可高效制备高质量大面积一致性亚波长表面结构。
Abstract
In this study, the adjustments and changes of subwavelength ripples induced by ultrafast laser on titanium are experimentally investigated. In our experiments, 1064 nm picosecond laser and 800 nm femtosecond laser are used to irradiate the surface of metal titanium. The effects of incubation on the formation of subwavelength ripples are studied by changing pulse number and irradiation modes. The experimental results show that: 1) the overall trend of ripples areas, ablated areas and periods of rippled structures increases as the number of pulses increases; 2) due to the incubation effects, the increase is different; 3) by designing laser pulse irradiation modes, samples firstly irradiated by several shots and then by remaining shots, have better surface morphologies. Hence, large-area, uniform rippled structures can be adjusted by designing laser pulse modes and pulse number.
参考文献

[1] YAO J W, ZHANG C Y, LIU H Y, et al.High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses[J].Opt.Express, 2012, 20(2): 905-911.

[2] COLOMBIER J P, GARRELIE F, FAURE N, et al.Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals[J].J.Appl.Phys., 2012, 111(2): 024902.

[3] HARZIC R L, DRR D, SAUER D, et al.Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate[J].Opt.Lett., 2011, 36(2): 229-231.

[4] HHM S, ROHLOFF M, ROSENFELD A, et al.Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences[J].Appl.Phys.A, 2013, 110(3): 553-557.

[5] WAGNER R, GOTTMANN J, HORN A, et al.Subwavelength ripple formation induced by tightly focused femtosecond laser radiation[J].Appl.Surf.Sci., 2006, 252(14): 8576-8579.

[6] HHM S, ROSENFELD A, KRGER J, ET AL.Femtosecond laser-induced periodic surface structures on silica.J.Appl.Phys., 2012, 112(1): 014901.

[7] FABIANI I M, REBOLLAR E, PREZ S, et al.Laser-Induced Periodic Surface Structures Nanofabricated on Poly(trimethylene terephthalate) Spin-Coated Films[J].Langmuir, 2012, 28(20): 7938-7945.

[8] MIYAJI G, MIYAZAKI K.Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses[J].Appl.Phys.Lett., 2007, 91(12): 123102.

[9] LI Q K, CAO J J, YU Y H, et al.Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing[J].Optics Letters, 2017, 42(3): 543-546.

[10] YONG J, CHEN F, YANG Q, et al.Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J].Journal of Materials Chemistry A, 2015, 3(18): 9379-9384.

[11] EMMONY D C, HOWSON R P AND WILLIS L J.Laser mirror damage in germanium at 10.6 μm[J], Appl.Phys.Lett., 1973, 23(11), 589-590.

[12] SIPE J E, YOUNG J F, PRESTON J S et al.Laser-induced periodic surface structute.I.Theory[J], Phys.Rev.B, 1983, 27(2), 1141-1154.

[13] JIANG L, WANG A, LI B, et al.Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J].Light-Sci. Appl., 2018(7): 17134.

[14] WANG X, LI C, MA C, et al.Formation of laser induced periodic structures on stainless steel using multi-burst picosecond pulses[J].Opt.Express, 2018, 26(5): 6325-6330.

[15] FRAGGELAKIS F, MINCUZZI G, LOPEZ J, et al.Texturing metal surface with MHz ultra-short laser pulses[J].Opt. Express, 2017, 25(5): 18131.

[16] LU Y F, YU J J AND CHOI W K.Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/ aluminum interfaces[J], Appl.Phys.Lett., 1997, 71(23): 3439-3440.

[17] DONG Y Y AND MOLIAN P A.Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser [J], Appl.Phys.Lett., 2004, 84(1), 10-12.

[18] DUFFT D, ROSENFELD A, DAS S K, et al.Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO[J].J.Appl.Phys., 2009, 105(3), 034908.

[19] VARLAMOVA O, COSTACHE F, REIF J et al.Self-organized pattern formation upon femtosecond laser ablation by circular polarized light[J], Appl.Surf.Sci., 2006, 252(13)4702-4706.

[20] BHARDWAJ V R, SIMOVA E, RAJEEV P P, et al.Optically produced arrays of planar nanostructures inside fused silica[J], Phys.Rev.Lett., 2006, 96(5): 057404.

[21] WANG J AND GUO C.Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J], Appl.Phys.Lett., 2005, 87(25): 251914.

[22] HUANG M, ZHAO F, CHENG Y, et al.Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J], ACS Nano, 2009, 3(12), 4062-4070.

[23] YUAN Y, JIANG L, LI X, et al.Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics[J], J.Phys.D Appl.Phys., 2012, 45(17): 175301.

[24] LIANG F, VALLE R, CHIN S L.Pulse fluence dependent nanograting inscription on the surface of fused silica[J], Appl.Phys.Lett., 2012, 100(25): 251105.

[25] FORSTER M, KAUTEK W, FAURE N, et al.Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses[J], Phys.Chem.Chem.Phys., 2011, 13(9): 4155-4158.

[26] BONSE J, KRGER.Pulse number denpendence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J].J.Appl.Phys., 2010, 108(3): 034903.

[27] ZHAO Q Z, MALZER S AND WANG L J.Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses[J], Opt.Express, 2007, 15(24), 15741.

[28] HIRANO M, KAWAMURA K, HOSONO H.Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse[J], Appl.Surf.Sci., 2002(197-198), 688-698.

[29] YANG Y, YANG J, XUE L, GUO Y.Surface patterning on periodicity of femtosecond laser-induced ripples[J], Phys.Rev.Lett., 2010, 97(14): 141101.

[30] HUANG M, ZHAO F, CHENG Y, et al.Large area uniform nanostructures fabricated by direct femtosecond laser ablation[J], Opt. Express, 2008, 16(23): 19354.

[31] MANNION P T, MAGEE J, COYNE E, et al.The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J].Appl.Surf.Sci., 2004, 233(1-4): 275-287.

[32] LOU K, QIAN J, SHEN D, et al.Recording, erasing, and rewriting of ripples on metal surfaces by ultrashort laser pulses[J], Opt.Lett., 2018, 43(8): 1778.

袁艳萍, 陈海达, 李东方, 张成宇, 刘志, 陈继民. 孵化效应对超快激光诱导金属钛表面周期结构的形貌影响[J]. 应用激光, 2019, 39(4): 602. Yuan Yanping, Chen Haida, Li Dongfang, Zhang Chengyu, Liu Zhi, Chen Jimin. Effects of Incubation on Morphology Changes of Subwavelength Ripples Induced by Ultrafast Laser[J]. APPLIED LASER, 2019, 39(4): 602.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!