光通信技术, 2020, 44 (11): 43, 网络出版: 2021-04-17  

基于薄包层FBG的热线式光纤风速计

Hot wire optical fiber anemometer based on thin cladding FBG
作者单位
1 中国计量大学 光学与电子科技学院, 杭州 310018
2 广东工业大学 信息工程学院, 广州 510006
摘要
为提高热线式光纤风速计的性能, 在金属膜光纤布喇格光栅(FBG)热线式光纤风速计的基础上, 通过减小FBG的包层厚度, 使风速计的FBG包层直径从125 μm减小到71.6 μm, 并将这种薄包层FBG热线式光纤风速计与FBG常规风速计进行对比实验。结果表明: 薄包层FBG热线式光纤风速计的初始温度提高了43.4%; 风速测量的灵敏度显著提高了61.2%; 受使用的风洞限制, 风速最大测试范围为20 m/s。
Abstract
In order to improve the performance of the hot wire fiber anemometer, based on the metal film fiber Bragg grating(FBG) hot wire fiber anemometer, the FBG cladding diameter of the anemometer is reduced from 125 μm to 71.6 μm by reducing the thickness of the FBG cladding, the thin cladding FBG hot wire optical fiber anemometer is compared with FBG conventional anemometer. The results show that the initial temperature of FBG hot wire fiber anemometer is increased by 48.3%, the sensitivity of airflow velocity measurement is significantly increased by 61.2%, and limited by the wind tunnel used, the maximum wind speed test range is 20 m/s.
参考文献

[1] VENUGOPAL A, AGRAWAL A, PRABHU S V. Review on vortex flowmeter-designer perspective[J]. Sensors and Actuators A: Physical, 2011, 170: 8-23.

[2] CHA J E, AHN Y C, KIM M H. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes[J]. Flow Measurement & Instrumentation, 2002, 12(5): 329-339.

[3] LIGEZA P. An investigation of a constant-bandwidth hot-wire anemo-meter[J]. Flow Measurement & Instrumentation, 2009, 20(3): 116-121.

[4] WUCHANG C A. Flow measuring instrument applications and developing trends[J]. Process Automation Instrumentation, 2006, 27(7): 71-76.

[5] ODA S, ANZAI M, UEMATSU S, et al. A silicon micromachined flow sensor using thermopiles for heat transfer measurements[J]. IEEE Transactions on Instrumentation & Measurement, 2003, 52(4): 1155-1159.

[6] RASMUSSEN A, ZAGHLOUL M E. In the flow with MEMS[J]. IEEE Circuits & Devices Magazine, 1998, 14(4): 12-25.

[7] WANG Y H, LEE C Y, CHIANG C M. A MEMS-based air flow sensor with a free-standing micro-cantilever structure[J]. Sensors, 2007, 7(10): 2389-2401.

[8] LEE C L, HONG W Y, HSIEH H J, et al. Air Gap Fiber Fabry-Perot interferometer for highly sensitive micro-airflow sensing[J]. IEEE Photonics Technology Letters, 2011, 23(13): 905-907.

[9] JEWART C, MCMILLEN B, CHO S K, et al. X-probe flow sensor using self-powered active fiber Bragg gratings[J]. Sensors and Actuators A: Physical, 2006, 127(1): 63-68.

[10] BYRNE G D, JAMES S W, TATAM R P. A Bragg grating based fibre optic reference beam laser Doppler anemometer[J]. Measurement Science & Technology. 2001, 12(7): 909-913.

[11] HSIAO Y L, LI C M, CHIANG T C, et al. 16th Opto-electronics and communications conference, July 4-8, 2011[C]. Kaohsiung: IEEE, 2011.

[12] CASHDOLLAR L J, CHEN K P. Fiber Bragg grating flow sensors powered by in-fiber light[J]. IEEE Sensors Journal, 2005, 5(6): 1327-1331.

[13] CALDAS P, JORGE P A S, REGO G, et al. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure[J]. Appl. Opt., 2011, 50(17): 2738-2743.

[14] WANG X H, DONG X Y, ZHOU Y, et al. Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by No-core fiber[J]. IEEE Photonics Technology Letters, 2013, 25(24): 2458-2461.

[15] DONG X Y, ZHOU Y, ZHOU W J, et al. Compact anemometer using silver-coated fiber Bragg grating[J]. IEEE Photonics Journal, 2012, 4(5): 1381-1386.

[16] 尚秋峰, 秦文婕. FBG传感系统信号处理方法研究进展[J]. 光通信技术, 2020, 44(5): 5-9.

[17] CHANG Z S. The available range of Newton's law of cooling[J]. College Physics, 2000, 10(9): 55-59.

[18] BRUUN H H. Hot-wire anemometry: Principles and signal analysis[M]. Oxford: Measurement Science and Technology, 1996.

[19] LOMAS C G, KORMAN M S. Fundamentals of hot wire anemometry[M]. Cambridge: Cambridge University Press, 1986.

[20] WANG X H, DONG X Y, ZHOU Y, et al. Optical fiber anemometer using silver-coated fiber Bragg grating and bitaper[J]. Sensors and Actuators A: Physical, 2014, 214: 230-233.

[21] YAN S C, LIU Z Y, LI C, et al. “Hot-wire” microfluidic flowmeter based on a micro fiber coupler[J]. Optics Letters, 2016, 41(24): 5680-5683.

陈旭科, 董新永. 基于薄包层FBG的热线式光纤风速计[J]. 光通信技术, 2020, 44(11): 43. CHEN Xuke, DONG Xinyong. Hot wire optical fiber anemometer based on thin cladding FBG[J]. Optical Communication Technology, 2020, 44(11): 43.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!