应用激光, 2023, 43 (6): 0087, 网络出版: 2024-02-02  

某型压力传感器芯体激光焊接模型化分析

Modeling Analysis of Laser Welding Process for A Pressure Sensor Core
作者单位
中国航发控制系统研究所传感系统工程部,江苏 无锡 214063
摘要
基于数值仿真工具,对某型压力传感器芯体径向脉冲激光焊接过程进行3D建模及仿真分析。模型描述了焊接过程中脉冲激光形成的等效热源,316L不锈钢材料的传热和相变,热影响区形成的瞬态应力场,以及焊接后形成的残余应力。同时,根据多种激光焊接工艺参数组合形成的熔池深度实测数据完成等效热源模型的标定。结果显示:经过标定的等效热源模型熔深计算值与实测值偏差在8%以内;将焊缝残余应力分布计算值与X射线衍射法所得的实测值进行了对比分析,两者结果较为吻合,变化规律一致,偏差值小于15%。验证了激光焊接模型的精度能够满足工艺参数影响规律研究及参数优化的工程需要。
Abstract
Based on numerical simulation tools, the radial pulse laser welding process of a pressure sensor core is simulated. The model describes the equivalent heat source formed by the laser, heat transfer and phase transformation of 316L, the transient stress field formed by heat affected zone, and residual stress formed after welding. At the same time, according to the measured depth of the molten pool formed by various laser welding process parameters, calibration of the equivalent heat source model is finished, and the deviation values are within 8%. The comparative analysis between the calculated value of residual stress and measured residual stress value by X-ray diffraction method shows that the two results are consistent, and the deviation values are within 15%. It is verified that the engineering needs of study for influence law of process parameters and parameter optimization are met by the accuracy of laser welding model.
参考文献

[1] 魏延鹏, 虞钢, 段祝平. 高温高应变率下异种不锈钢激光焊接件的力学性能[J]. 爆炸与冲击, 2011, 31(5): 504-509.WEI Y P, YU G, DUAN Z P. Mechanical properties of laser-welded dissimilar stainless steels structure at elevated temperature and high strain rates[J]. Explosion and Shock Waves, 2011, 31(5): 504-509.

[2] 申文竹, 李春福, 王朋飞, 等. 316L不锈钢25~350℃中的拉伸行为及流变应力计算[J]. 材料热处理学报, 2012, 33(9): 49-54.SHEN W Z, LI C F, WANG P F, et al. Tensile behavior and flow stress calculation of 316L stainless steel at 25~350 ℃[J]. Transactions of Materials and Heat Treatment, 2012, 33(9): 49-54.

[3] 范圣刚, 郑家珵, 孙文隽, 等. S30408奥氏体不锈钢高温力学性能试验研究[J]. 工程力学, 2017, 34(4): 167-176.FAN S G, ZHENG J C, SUN W J, et al. Experimental investigation on mechanical properties of s30408 austenitic stainless steel at elevated temperatures[J]. Engineering Mechanics, 2017, 34(4): 167-176.

[4] 韩豫, 王可胜, 刘全坤. 应变强化对奥氏体不锈钢高温疲劳行为的影响[J]. 机械工程学报, 2013, 49(12): 32-37.HAN Y, WANG K S, LIU Q K. Effect of cold stretching on fatigue behavior of austenitic stainless steel at elevated temperature[J]. Journal of Mechanical Engineering, 2013, 49(12): 32-37.

[5] 姜泽东, 王学明. 316L不锈钢薄板激光焊端焊缝焊接工艺研究[J]. 应用激光, 2019, 39(4): 586-589.JIANG Z D, WANG X M. Study on welding technology of laser welding end weld of 316L stainless steel sheet[J]. Applied Laser, 2019, 39(4): 586-589.

[6] 李尚仁, 安升辉, 王春明, 等. 高功率激光焊接匙孔形态行为对焊缝成形及力学性能的影响[J]. 应用激光, 2019, 39(6): 956-960.LI S R, AN S H, WANG C M, et al. Effect of shape and behavior of high power laser welding keyhole on weld morphology and mechanical properties[J]. Applied Laser, 2019, 39(6): 956-960.

[7] REDDY P, PATEL V, YADAV A, et al. Modelling and simulation of equilibrium and non-equilibrium solidification in laser spot welding[J]. IOP Conference Series: Materials Science and Engineering, 2018, 310: 012092.

[8] NAVAS V G, LEUNDA J, LAMBARRI J, et al. Optimization of laser keyhole welding strategies of dissimilar metals by FEM simulation[J]. Metallurgical and Materials Transactions A, 2015, 46(7): 3140-3156.

[9] 卢海飞, 鲁金忠, 张文泉, 等. 激光冲击316L不锈钢焊接件的模拟分析与试验研究[J]. 激光与光电子学进展, 2017, 54(10): 101411.LU H F, LU J Z, ZHANG W Q, et al. Simulation analysis and experimental study of 316LStainless steel weldments processed by laser shock peening[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101411.

[10] 温鹏, 荻崎贤二, 山本元道. 环形结构激光焊接凝固热裂纹的实验研究和数值模拟[J]. 金属学报, 2011, 47(10): 1241-1245.WEN P, SHINOZAKI K, YAMAMOTO M. Experimental research and numerical simulation of solidification crack during laser welding of ring structure[J]. Acta Metallurgica Sinica, 2011, 47(10): 1241-1245.

[11] 陈君, 张群莉, 姚建华, 等. 金属材料的激光吸收率研究[J]. 应用光学, 2008, 29(5)793-798CHEN J, ZHANG Q L, YAO J H, et al. Study on laser absorptivity of metal material[J]. Journal of Applied Optics, 2008, 29(5)793-798

[12] 王敏, MICHEL G, JULLIEN J F. 316L奥氏体不锈钢焊接热影响区性能[J]. 上海交通大学学报, 2001, 35(3): 424-426.WANG M, MICHEL G, JULLIEN J F. Thermal simulation on the welding heat affected zone of 316 L steel[J]. Journal of Shanghai Jiao Tong University, 2001, 35(3): 424-426.

[13] 宋仁伯, 项建英, 刘良元, 等. 316L不锈钢的热变形抗力模型[J]. 机械工程材料, 2010, 34(6): 85-88.SONG R B, XIANG J Y, LIU L Y,et al. Hot deformation resistance model of 316L stainless steel[J]. Materials for Mechanical Engineering, 2010, 34(6): 85-88.

[14] 胡文浩,李余江,许鸿吉等. 高速动车组转向架构架焊接残余应力研究(二)[J]. 焊接技术, 2018, 47(2): 28-29.HU W H, LI Y J, XU H J, et al. Research on welding residual stress of bogie frame for high-speed EMU (Ⅱ) [J]. Welding Technology, 2018, 47(2): 28-29.

[15] 张国栋, 郑剑平, 赵俊, 等. 316不锈钢激光焊接中离焦量对热裂纹的影响[J]. 原子能科学技术, 2018, 52(2): 210-214.ZHANG G D, ZHENG J P, ZHAO J, et al. Effect of defocusing amount on hot cracking in laser welding of 316 stainless steel[J]. Atomic Energy Science and Technology, 2018, 52(2): 210-214.

张进, 李余沛, 何青林. 某型压力传感器芯体激光焊接模型化分析[J]. 应用激光, 2023, 43(6): 0087. Zhang Jin, Li Yupei, He Qinglin. Modeling Analysis of Laser Welding Process for A Pressure Sensor Core[J]. APPLIED LASER, 2023, 43(6): 0087.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!