液晶与显示, 2023, 38 (4): 471, 网络出版: 2023-04-25  

基于人工局域表面等离激元的液晶微波介电常数测量传感器

Liquid crystal microwave dielectric constant measurement sensor based on spoof localized surface plasmon
作者单位
1 南京邮电大学 集成电路科学与工程学院,江苏 南京 210023
2 南京邮电大学 射频集成与微组装技术国家地方联合工程实验室,江苏 南京 210023
3 南京邮电大学 电子与光学工程学院,江苏 南京 210023
引用该论文

李若舟, 吴哲元, 杨铭清, 屈科, 于映, 严静. 基于人工局域表面等离激元的液晶微波介电常数测量传感器[J]. 液晶与显示, 2023, 38(4): 471.

Ruo-zhou LI, Zhe-yuan WU, Ming-qing YANG, Ke QU, Ying YU, Jing YAN. Liquid crystal microwave dielectric constant measurement sensor based on spoof localized surface plasmon[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(4): 471.

参考文献

[1] YANGD K, WUS T. Fundamentals of Liquid Crystal Devices [M]. Chichester: Wiley, 2015.

[2] 邹呈, 高延子, 于美娜, 等. 液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J]. 应用化学, 2021, 38(10): 1213-1225.

    ZOU C, GAO Y Z, YU M N, et al. Recent advances in liquid crystal/polymer composites and their applications in reverse-mode electrically switchable light-transmittance controllable films[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1213-1225.

[3] 崔永杰, 钟佳鑫, 廖勋凡, 等. 液晶分子在有机太阳能电池中的应用研究进展[J]. 应用化学, 2021, 38(10): 1326-1339.

    CUI Y J, ZHONG J X, LIAO X F, et al. Research progress of liquid crystal molecules for application in organic solar cells[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1326-1339.

[4] TING T L. Technology of liquid crystal based antenna[J]. Optics Express, 2019, 27(12): 17138-17153.

[5] ZOGRAFOPOULOS D C, FERRARO A, BECCHERELLI R. Liquid-crystal high-frequency microwave technology: materials and characterization[J]. Advanced Materials Technologies, 2019, 4(2): 1800447.

[6] MAUNE H, JOST M, REESE R, et al. Microwave liquid crystal technology[J]. Crystals, 2018, 8(9): 355.

[7] CAMLEY R, CELINSKI Z, GARBOVSKIY Y, et al. Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges[J]. Liquid Crystals Reviews, 2018, 6(1): 17-52.

[8] DUBOIS F, KRASINSKI F, SPLINGART B, et al. Large microwave birefringence liquid-crystal characterization for phase-shifter applications[J]. Japanese Journal of Applied Physics, 2008, 47(5R): 3564-3567.

[9] FRANKET, GAEBLERA, PRASETIADIA E, et al. Tunable Ka-band waveguide resonators and a small band band-pass filter based on liquid crystals [C]//44th European Microwave Conference. Rome, Italy: IEEE, 2014: 339-342. 10.1109/eumc.2014.6986439

[10] BILDIK S, DIETER S, FRITZSCH C, et al. Reconfigurable folded reflectarray antenna based upon liquid crystal technology[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 122-132.

[11] ZHAO Y Z, HUANG C, QING A Y, et al. A frequency and pattern reconfigurable antenna array based on liquid crystal technology[J]. IEEE Photonics Journal, 2017, 9(3): 1-7.

[12] KARABEY O H, GAEBLER A, STRUNCK S, et al. A 2-D electronically steered phased-array antenna with 2×2 elements in LC display technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1297-1306.

[13] WITTEK M, FRITZSCH C, SCHROTH D. Employing liquid crystal-based smart antennas for satellite and terrestrial communication[J]. Information Display, 2021, 37(1): 17-22.

[14] WANG Q, ZHANG X G, TIAN H W, et al. Millimeter-wave digital coding metasurfaces based on nematic liquid crystals[J]. Advanced Theory and Simulations, 2019, 2(12): 1900141.

[15] STEVENSONR A, BILYA H, CURED, et al. Rethinking wireless communications: advanced antenna design using LCD technology [C]//SID International Symposium: Digest of Technology Papers, 2015, 46(1): 827-830. 10.1002/sdtp.10347

[16] NARAYANAN P M. Microstrip transmission line method for broadband permittivity measurement of dielectric substrates[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(11): 2784-2790.

[17] CAIJUN Z, QUANXING J, SHENHUI J. Calibration-independent and position-insensitive transmission/reflection method for permittivity measurement with one sample in coaxial line[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 684-689.

[18] MUÑOZ-ENANO J, VÉLEZ P, SU L J, et al. On the sensitivity of reflective-mode phase-variation sensors based on open-ended stepped-impedance transmission lines: theoretical analysis and experimental validation[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 308-324.

[19] ZHOU Z, MELDE K L. A comprehensive technique to determine the broadband physically consistent material characteristics of microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(1): 185-194.

[20] ROLFESI, SCHIEKB. A novel method for the determination of the dielectric properties of liquids at microwave frequencies [C]//2006 European Microwave Conference. Manchester: IEEE, 2006: 399-402. 10.1109/eumc.2006.281358

[21] EBRAHIMI A, SCOTT J, GHORBANI K. Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 4269-4277.

[22] GAN H Y, ZHAO W S, HE L, et al. A CSRR-loaded planar sensor for simultaneously measuring permittivity and permeability[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(2): 219-221.

[23] 马恒, 浮新普, 女川博義. 液晶材料介电常数的毫米波频率特性研究[J]. 液晶与显示, 2009, 24(6): 779-782.

    MA H, FU X P, ONNAGAWA H. Millimeter wave frequency dependency of dielectric constant in liquid crystal materials[J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(6): 779-782.

[24] SANCHEZJ R, NOVAV, BACHILLERC, et al. Measurement of the dielectric properties of liquid crystal material for microwave applications [C]//17th International Conference on Microwave and High Frequency Heating. Valencia, Spain: AMPERE, 2019: 506-510. 10.4995/ampere2019.2019.9983

[25] JANEZIC M D, BAKER-JARVIS J. Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(10): 2014-2020.

[26] 兰庚, 曹秋豪, 欧阳慧琦, 等. 含氟三联苯类异硫氰酸酯类液晶合成与微波性能研究[J]. 液晶与显示, 2021, 36(9): 1214-1224.

    LAN G, CAO Q H, OUYANG H Q, et al. Synthesis and microwave properties of fluorinated terphenyl isothiocyanate liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1214-1224.

[27] 李诗妍, 王婵, 关金涛, 等. 侧位含氟苯乙炔类液晶化合物的微波介电性能[J]. 液晶与显示, 2021, 36(7): 913-920.

    LI S Y, WANG C, GUAN J T, et al. Microwave dielectric properties of fluorine substituted phenylacetylene liquid crystal compounds[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 913-920.

[28] SHEN X P, CUI T J, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 40-45.

[29] 张浩驰, 何沛航, 牛凌云, 等. 人工表面等离激元超材料[J]. 光学学报, 2021, 41(1): 0124001.

    ZHANG H C, HE P H, NIU L Y, et al. Spoof plasmonic metamaterials[J]. Acta Optica Sinica, 2013, 110(1): 0124001.

[30] ZHOU Y J, LI Q Y, ZHAO H Z, et al. Gain-assisted active spoof plasmonic fano resonance for high-resolution sensing of glucose aqueous solutions[J]. Advanced Materials Technologies, 2020, 5(1): 1900767.

[31] ALAHNOMI R A, ZAKARIA Z, YUSSOF Z M, et al. Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions[J]. Sensors, 2021, 21(7): 2267.

[32] SEO Y, MEMON M U, LIM S. Microfluidic eighth-mode substrate-integrated-waveguide antenna for compact ethanol chemical sensor application[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 3218-3222.

[33] MEMON M U, LIM S. Microwave chemical sensor using substrate-integrated-waveguide cavity[J]. Sensors, 2016, 16(11): 1829.

[34] KIANI S, REZAEI P, NAVAEI M. Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection[J]. Measurement, 2020, 160: 107805.

[35] AWANG R A, TOVAR-LOPEZ F J, BAUM T, et al. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids[J]. Journal of Applied Physics, 2017, 121(9): 094506.

[36] EBRAHIMI A, WITHAYACHUMNANKUL W, AL-SARAWI S, et al. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization[J]. IEEE Sensors Journal, 2014, 14(5): 1345-1351.

[37] ALTINTAS O, AKSOY M, AKGOL O, et al. Fluid, strain and rotation sensing applications by using metamaterial based sensor[J]. Journal of The Electrochemical Society, 2017, 164(12): B567-B573.

李若舟, 吴哲元, 杨铭清, 屈科, 于映, 严静. 基于人工局域表面等离激元的液晶微波介电常数测量传感器[J]. 液晶与显示, 2023, 38(4): 471. Ruo-zhou LI, Zhe-yuan WU, Ming-qing YANG, Ke QU, Ying YU, Jing YAN. Liquid crystal microwave dielectric constant measurement sensor based on spoof localized surface plasmon[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(4): 471.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!