压电与声光, 2021, 43 (3): 359, 网络出版: 2021-12-28  

采用硅钢片导磁框的高速磁致伸缩致动器

High-Speed Magnetostrictive Actuator Using Silicon Steel Sheet Magnetic Frame
作者单位
中国科学技术大学 精密机械与精密仪器系, 安徽 合肥 230026
摘要
高频涡流损耗限制了磁致伸缩致动器的输出速度。该文提出了一种采用硅钢片导磁框的高速磁致伸缩致动器。与整块硅钢结构的导磁框相比, 分区绝缘的硅钢片可降低等效电导率, 减小导磁元件中的涡流。该设计提高了磁致伸缩棒中的磁场强度, 使致动器在高频磁场激励下也能输出较大振幅。在有效值为35 A@2 kHz的正弦波励磁电流下, 采用叠片结构导磁框的磁致伸缩致动器输出振幅11.1 μm@4 kHz的振动, 比采用整体结构导磁框的致动器输出速度提升了44.2%。这说明将磁路元件分区绝缘有利于提升磁致伸缩致动器的输出速度。
Abstract
The high frequency eddy current loss limits the output speed of the magnetostrictive actuator. This paper presents a high speed magnetostrictive actuator with silicon steel sheet magnetic frame. Compared with the magnetic frame of the integral silicon steel structure, the partition insulated silicon steel sheet can reduce the equivalent conductivity and eddy current in the magnetic element. This design increases the magnetic field strength in the magnetostrictive rod, so that the actuator can output large amplitude under high frequency magnetic field. At the sinusoidal excitation current of 35 A(rms)@2 kHz, the output amplitude of the magnetostrictive actuator with laminated magnetic frame is 11.1 μm@4 kHz, which is 44.2% higher than that of the actuator with integral magnetic frame. This indicates that the partition insulation of the magnetic circuit element is beneficial to improve the output speed of the magnetostrictive actuator.
参考文献

[1] LI Liyi,ZHANG Chengming,YAN Baiping, et al. Research of a giant magnetostrictive valve with Internal cooling structure[J]. IEEE Transactions on Magnetics,2011,47(10):2897-2900.

[2] 殷毅.稀土超磁致伸缩材料及其应用研究现状[J].磁性材料及器件,2018,49(3):57-60.

[3] LI Liyi,ZHANG Chengming,YAN Baiping,et al.Research of fast-response giant magnetostrictive actuator for space propulsion system[J]. IEEE Transactions on Plasma Science,2011, 39(2):744-748.

[4] YU Caofeng, WANG Chuanli, DENG Haishun, et a1.Hysteresis nonlinearity modeling and position control for a precision positioning stage based on a giant magnetostrictive actuator[J]. RSC Advances, 2016,64(6):59468-59476.

[5] BENLAMINE R,DUBAS F,RANDI S A,et al.3D numerical hybrid method for pm eddy-current losses calculation: Application to axial-flux PMSMs[J]. IEEE Transactions on Magnetics,2015, 51(7):1-10.

[6] YAMAZAKI K,ABE A. Loss investigation of interior permanent-magnet motors considering carrier harmonics and magnet eddy currents[J]. IEEE Transactions on Industry Applications, 2009, 45(2):659-665.

[7] 梁俊虎. 基于有限元法的超磁致伸缩换能器磁路结构设计及实验研究[D].天津: 河北工业大学, 2011.

[8] 李寅博. 超磁致伸缩功率超声换能器磁滞损耗及热分析[D]. 沈阳: 沈阳工业大学,2009.

[9] 陈龙. 面向电静液作动器的超磁致伸缩泵的研究[D]. 南京: 南京航空航天大学,2014.

[10] ZHOU Jingtao,HE Zhongbo,SHI Zhiyong,et al.Design and experimental performance of an inertial giant magnetostrictive linear actuator[J].Sensors and Actuators a Physical,2019,301:111771.

[11] HURLEY W G, WOLFLE W H. 应用于电力电子技术的变压器和电感[M]. 北京: 机械工业出版社, 2014:158

[12] BERMUDEZ A, GOMEZ D, SALGADO P. Eddy-current losses in laminated cores and the computation of an equivalent conductivity[J]. IEEE Transactions on Magnetics, 2008, 44(12):4730-4738.

刘鹏飞, 冯志华. 采用硅钢片导磁框的高速磁致伸缩致动器[J]. 压电与声光, 2021, 43(3): 359. LIU Pengfei, FENG Zhihua. High-Speed Magnetostrictive Actuator Using Silicon Steel Sheet Magnetic Frame[J]. Piezoelectrics & Acoustooptics, 2021, 43(3): 359.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!