玻璃搪瓷与眼镜, 2023, 51 (2): 13, 网络出版: 2023-03-17  

高强度冷轧双面搪瓷用钢的显微组织和性能

Microstructure and Properties of High-strength Cold-rolled Double-sided Enamel Steel
作者单位
1 马鞍山钢铁股份有限公司技术中心, 马鞍山 243000
2 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
摘要
采用光学显微镜、扫描电子显微镜和拉伸试验机研究了屈服强度为360 MPa级高强度冷轧双面搪瓷用钢搪烧前后的显微组织和力学性能, 应用氢渗透实验评价了实验钢的抗鳞爆性能, 并在实验室进行了湿法和静电干法涂搪实验。研究结果表明: 搪烧前后实验钢的显微组织均为铁素体, 经过搪烧, 铁素体由扁平状变为等轴状, 平均晶粒尺寸由5.47 μm增大至7.07 μm, 搪烧前后实验钢的析出相主要是C、S和Ti的析出相及部分C、S和Mn、Ti的复合析出相, 搪烧后晶粒内析出物数量明显变少。实验钢搪烧前的屈服强度、抗拉强度和伸长率分别为382 MPa、469 MPa和34.5%; 搪烧后的屈服强度降低至355 MPa, 抗拉强度降低至405 MPa, 伸长率增加至38%。强度的降低是由于铁素体平均晶粒尺寸增大、第二相析出物密度降低导致的。实验钢的氢渗透时间为9.68 min, 经湿法和静电干法双面涂搪、烧成后无鳞爆, 密着性能良好。
Abstract
The microstructure and mechanical properties of a 360 MPa grade high-strength cold-rolled double-sided enamel were studied by optical microscope, scanning electron microscope and tensile tester. The fish-scaling resistance of the experimental steel was evaluated by hydrogen penetration experiment, and the wet and electrostatic dry applying experiments were also performed in the laboratory. The results show that the microstructure of the experimental steel before and after enameling is ferrite, the ferrite changes from flat to equiaxed and the average grain size increases from 5.47 μm to 7.07 μm. The precipitates of the experimental steel before and after enameling are mainly composed of C, S, Mn and Ti, and the amount of precipitates in the grain decreases obviously after enamel. Before enameling, the yield strength, tensile strength and elongation of the experimental steel are 382 MPa, 469 MPa and 34.5%, respectively. After enameling, the yield strength reduced to 355 MPa, the tensile strength reduced to 405 MPa, and the elongation increased to 38%. The decrease of the strength is caused by the increase of the average grain size of ferrite and the decrease of the density of the second phase precipitates. The hydrogen penetration time of the experimental steel is 9.68 min. After double-sided enamel by wet and electrostatic dry methods, there is no fish-scaling defect indicating good adherence performance.
参考文献

[1] 丁少坤,丁文战,蒋伟忠.新型搪瓷拼装罐的发展与应用[J].玻璃搪瓷与眼镜,2020,48(6):44-47.

[2] HUANG X, ZHANG Z, LIU X, et al. Variations of microstructure and resistance to fish-scaling of a hot rolled enamel steel before and after enamel firing[J]. Journal of Materials Research and Technology, 2021, 11:466-473.

[3] ZHAO Y, HUANG X,YU B, et al. Effect of coiling temperature on microstructure, properties and resistance to fish-scaling of hot rolled enamel steel[J]. Materials, 2017, 10:1012.

[4] DEVANATHAN M A V, STACHURSKI Z. The adsorption and diffusion of electrolytic hydrogen in palladium[J]. Proceedings of the Royal Society of London, 1962 (270):90-102.

[5] SAMANTA S, KUMARI P, MONDAL K, et al. An alternative and comprehensive approach to estimate trapped hydrogen in steels using electrochemical permeation tests[J]. International Journal of Hydrogen Energy, 2020,45(51):26666-26687.

[6] 褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988:18.

[7] PAPP G,GEYER D, GIEDENBACHER G. Continuously cast steel sheet for enamelling and technical properties of hot and cold rolled sheet[J].The Viterous Enameller,1990,41(4):71-81.

[8] EN 10209-2013 Cold rolled low carbon steel flat products for vitreous enamelling-Technical delivery conditions[S].The UK: The British Standards Institution, 2013.

[9] 张宜,吴红艳,吴桐, 等.搪瓷烧制工艺对210MPa搪瓷钢组织与性能的影响[J].金属热处理,2016(8):94-98.

[10] 李德强,叶其斌, 周成, 等.含Nb-Ti低碳钢的析出与细晶强化效应研究[J].鞍钢技术,2012,376(4):21-25.

[11] 孙全社,金蕾.静电搪瓷用高强度热轧薄钢板的性能[J].钢铁研究学报,2007,19(4):47-50.

[12] OKUYAMAS T, NISHIMOTO A,KUROKAWA T. New type cold rolled steel sheet for enamelling produced by the continuous casting method[J]. Vitreous Enamel ,1990(41):49-60.

张宜, 俞波, 汤亨强, 汪建威, 李进, 吴浩, 王占业, 吴红艳, 高秀华, 杜林秀. 高强度冷轧双面搪瓷用钢的显微组织和性能[J]. 玻璃搪瓷与眼镜, 2023, 51(2): 13. ZHANG Yi, YU Bo, TANG Hengqiang, WANG Jianwei, LI Jin, WU Hao, WANG Zhanye, WU Hongyan, GAO Xiuhua, DU Linxiu. Microstructure and Properties of High-strength Cold-rolled Double-sided Enamel Steel[J]. GLASS ENAMEL & OPHTALMIC OPTICS, 2023, 51(2): 13.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!