激光生物学报, 2017, 26 (1): 17, 网络出版: 2017-04-10  

810 nm弱激光照射对大鼠急性脊髓损伤后巨噬细胞极化的作用研究

The Effect of Low Level Laser Therapy on Macrophage Polarization after Acute Spinal Cord Injury In Rats
作者单位
1 第四军医大学西京骨科医院, 陕西 西安 710032
2 第四军医大学军事预防医学系劳动与环境卫生学教研室, 陕西 西安 710032
摘要
本研究构建急性大鼠脊髓夹伤模型, 并将大鼠随机分为单纯脊髓损伤对照组及脊髓损伤联合弱激光照射组。照射组应用810 nm波长, 150 mW照射功率, 照射光斑0.3 cm2的弱激光对脊髓损伤区进行经皮照射, 连续照射3天, 7天或14天。应用免疫荧光、免疫印迹实验方法, 测定脊髓损伤区巨噬细胞及小胶质细胞的极化表达。应用酶联免疫吸附法测定脊髓损伤区白细胞介素4的表达情况。应用坚牢蓝髓鞘染色测定两组损伤脊髓中髓鞘保留的差异。采用BBB评分对两组大鼠后肢运动功能的恢复进行评估。结果表明, 810 nm弱激光对脊髓损伤区连续照射3天, 7天后, 可显著减少M1型巨噬细胞及其标志物诱导型一氧化氮合酶的表达, 在7天时间增加M2型巨噬细胞及其标志物精氨酸酶1的表达。弱激光照射组白细胞介素4的表达明显增加。损伤后14天, 弱激光照射组脊髓损伤区髓鞘保留面积比值明显提高。损伤后7天及14天时, 弱激光照射组大鼠的BBB评分明显升高。该实验结果表明, 810 nm弱激光经皮照射, 可增加大鼠急性脊髓损伤区M2型巨噬细胞及小胶质细胞的表达, 并减少脊髓损伤后的髓鞘脱失, 促进脊髓损伤大鼠运动功能的恢复。
Abstract
The present study was designed to establish a bilateral compression spinal cord injury SCI rat model. 42 SD rats were randomly assigned to SCI only group (control group) or SCI followed by low level laser therapy group (LLLT group). After SCI, for the LLLT group, rats were received a laser beam (810 nm wavelength, 150 mW output power, 0.3 cm2 light spot) in percutaneous method once daily for consecutive 3, 7 or 14 days. Immunofluorescence (IF) and western blot (WB) were performed to evaluate the polarization state of macrophage/microglia in the injured spinal cord. Meanwhile, enzyme linked immunosorbent assay (ELISA) was performed to assess the expression of interleukin 4 (IL-4) and luxol fast blue (LFB) staining was used to assess the preservation of myelin sheath. Results of IF and WB revealed that M1 subset of macrophage/microglia and the cell marker inducible nitric oxide synthase(INOS) were significantly reduced in LLLT group at 3 and 7 days post injury (dpi). M2 subset and expression of the cell marker “arginasel(Arg1)” were significantly higher at 7 dpi. Expression of IL-4 was significantly higher in LLLT group. Preservation of myelin sheath and BBB scores were significantly higher in LLLT group at 14dpi and 7,14dpi respectively. The present study indicates that low level laser therapy can promote the beneficial M2 macrophage/microglia polarization, reduce the demyelination and accelerate locomotor functional recovery after spinal cord injury in rats.
参考文献

[1] EVCIK D, KAVUNCU V, CAKIR T, et al. Laser therapy in the treatment of carpal tunnel syndrome: a randomized controlled trial[J]. Photomed Laser Surg, 2007, 25(1):34-39.

[2] BJORDAL J M, LOPES-MARTINS R A, JOENSEN J, et al. A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow)[J].BMC Musculoskelet Disord, 2008, 9:75.

[3] CHUNG H, DAI T, SHARMA S K, et al. The nuts and bolts of low-level laser (light) therapy[J].Ann Biomed Eng, 2012, 40(2):516-533.

[4] HUANG Y Y, GUPTA A, VECCHIO D, et al. Transcranial low level laser (light) therapy for traumatic brain injury[J].J Biophotonics, 2012, 5(11-12):827-837.

[5] 尹振春, 董英海, 朱菁, 等. He-Ne激光对急性脊髓损伤总NOS、iNOS和ET-1的影响[J].应用激光, 2005, 25(3):214-217.

    YIN Zhenchun, DONG Yinghai, ZHU Jing, et al. Influence of intravascular low level He-Ne laser irradiation on total NOS, iNOS and ET-l in acute spinal cord injured- rabbits [J].Applied Laser, 2005, 25(3):214-217.

[6] 陈浩贤, 盛伟斌. 低能激光照射及嗅鞘细胞移植在脊髓损伤中的应用[J].中国组织工程研究与临床康复, 2008, 12(51):10179-10183.

    CHEN Haoxian, SHENG Weibin. Application of low power laser irradiation and olfactory ensheathing cell transplantation in treatment of spinal cord injury[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(51):10179-10183.

[7] 王哲, 夏雷, 龚凯, 等. 激光照射对急性脊髓损伤后脊髓再生的促进作用[J].中国激光, 2009, 36(11):3084-3088.

    WANG Zhe, XIA Lei, GONG Kai, et al. Positive effect of low power laser irradiation on neuron regeneration after acute spinal cord injury[J].Chinese J Lasers, 2009, 36(11):3084-3088.

[8] 夏雷, 罗卓荆, 王哲, 等. 脊髓损伤后弱激光照射对胶质瘢痕的影响[J].第四军医大学学报, 2009, 30(18):1693-1696.

    XIA Lei, LUO Zhuojing, WANG Zhe, et al. Effect of low power laser irradiation on glial scars following spinal cord injury[J].J Fourth Military Medical University, 2009, 30(18):1693-1696.

[9] 林松, 冯晓东, 刘永豪, 等. TENS加激光治疗脊髓损伤中枢性疼痛临床观察[J].中国实用神经疾病杂志, 2012, 15(24):80-81.

    LIN Song, FENG Xiaodong, LIU Yonghao, et al. Clinical observation of CNS pain of spinal cord injury after TENS plus low level laser therapy[J].Chinese Journal of Practical Nervous Disease, 2012, 15(24):80-81.

[10] 梁卓文, 王继猛, 胡学昱, 等. 大鼠脊髓损伤的弱激光治疗参数选择[J].激光生物学报, 2013, 22(5):403-408.

    LIANG Zhuowen, WANG Jimeng, HU Xueyu, et al. The optical parameter selection of low-level laser therapy in spinal cord injury rat models[J].Acta Laser Biology Sinica, 2013, 22(5):403-408.

[11] 王继猛, 梁卓文, 胡学昱, 等. 激光照射对脊髓损伤大鼠TNF-α、IL-6和IL-10表达的影响[J].中国激光, 2014, 41(2):253-257.

    WANG Jimeng, LIANG Zhuowen, HU Xueyu, et al. Effect of Low-Level Laser irradiation on expression of TNF-α, IL-6 and IL-10 after actue spinal cord injury in rats[J].Chinese J Lasers, 2014, 41(2):253-257.

[12] BYRNES K R, WAYNANT R W, ILEV I K, et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury[J].Lasers Surg Med, 2005, 36(3):171-185.

[13] WU X, DMITRIEV A E, CARDOSO M J, et al. 810 nm wavelength light:an effective therapy for transected or contused rat spinal cord[J].Lasers Surg Med, 2009, 41(1):36-41.

[14] KIGERL K A, GENSEL J C, ANKENY D P, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[J].J Neurosci, 2009, 29 (43) :13435-13444.

[15] DAVID S, KRONER A. Repertoire of microglial and macrophage responses after spinal cord injury[J].Nat Rev Neurosci, 2011, 12(7):388-399.

[16] REN Y, YOUNG W. Managing inflammation after spinal cord injury through manipulation of macrophage function[J].Neural Plast, 2013, 2013:945034.

[17] GUERRERO A R, UCHIDA K, NAKAJIMA H, et al. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice[J].J Neuroinflammation, 2012, 9:40.

[18] KRONER A, GREENHALGH A D, ZARRUK J G, et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord[J].Neuron, 2014, 83(5):1098-1116.

[19] PLEMEL J R, DUNCAN G, CHEN K W, et al. A graded forceps crush spinal cord injury model in mice[J].J Neurotrauma, 2008, 25(4):350-370.

[20] BASSO D M, BEATTIE M S, BRESNAHAN J C. A sensitive and reliable locomotor rating scale for open field testing in rats[J].J Neurotrauma, 1995, 12(1):1-21.

[21] OYINBO C A. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade[J]. Acta Neurobiol Exp (Wars), 2011, 71(2):281-299.

[22] HASHMI J T, HUANG Y, OSMANI B Z, et al. Role of low-level laser therapy in neurorehabilitation[J].PM&R, 2010, 2(12):S292-S305.

[23] PAULA A A, NICOLAU R A, LIMA MDO, et al. “Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury”[J]. Lasers Med Sci, 2014, 29(6):1849-1859.

[24] CHUNG H, DAI T, SHARMA S K, et al. The nuts and bolts of low-level laser (light) therapy[J]. Ann Biomed Eng, 2012, 40(2):516-533.

[25] SUP YSS, M YAMAGUCHI SUP S, SUP YAS. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts[J].Eur J Oral Sci, 2000, 108(1):29-34.

[26] CHEN Y, WANG Y, WANG C, et al. Effect of low level laser therapy on chronic compression of the dorsal root ganglion[J].PLoS One, 2014, 9(3):e89894.

[27] STIRLING D P, YONG V W. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry[J].J Neurosci Res, 2008, 86(9):1944-1958.

[28] ESPOSITO E, CUZZOCREA S. Anti-TNF therapy in the injured spinal cord[J].Trends Pharmacol Sci, 2011, 32(2):107-115.

[29] NAKAJIMA H, UCHIDA K, GUERRERO A R, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury[J].J Neurotrauma, 2012, 29(8):1614-1625.

[30] LEE S I, JEONG S R, KANG Y M, et al. Endogenous expression of interleukin-4 regulates macrophage activation and confines cavity formation after traumatic spinal cord injury[J].J Neurosci Res, 2010, 88(11):2409-2419.

[31] FENN A M, HALL J C, GENSEL J C, et al. IL-4 signaling drives a unique arginase+/IL-1beta+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Ralpha after traumatic spinal cord injury[J].J Neurosci, 2014, 34(26):8904-8917.

[32] TI K, NI A Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light[J].Dokl Akad Nauk, 1995, 342(5):693-695.

[33] TAFUR J, MILLS P J. Low-Intensity light therapy:exploring the role of redox mechanisms[J].Photomed Laser Surg, 2008, 26(4):323-328.

[34] ZHANG Y, CHOKSI S, CHEN K, et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages[J].Cell Res, 2013, 23(7):898-914.

[35] PAPASTEFANAKI F, MATSAS R. From demyelination to remyelination: the road toward therapies for spinal cord injury[J].Glia, 2015, 63(7):1101-1125.

宋基伟, 梁卓文, 李鲲, 沈学锋, 胡学昱, 王哲. 810 nm弱激光照射对大鼠急性脊髓损伤后巨噬细胞极化的作用研究[J]. 激光生物学报, 2017, 26(1): 17. SONG Jiwei, LIANG Zhuowen, LI Kun, SHEN Xuefeng, HU Xueyu, WANG Zhe. The Effect of Low Level Laser Therapy on Macrophage Polarization after Acute Spinal Cord Injury In Rats[J]. Acta Laser Biology Sinica, 2017, 26(1): 17.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!