光学技术, 2023, 49 (3): 305, 网络出版: 2023-11-26  

基于微结构光纤和游标效应的高灵敏度压力传感器

High precision pressure sensor based on microstructured optical fiber and vernier effect
作者单位
中北大学 仪器与电子学院 省部共建动态测试技术国家重点实验室, 山西 太原 030051
摘要
结构健康监测、医疗诊断分析、气压检测以及**工程应用等领域对压力的高灵敏度探测要求越来越高。光纤传感器由于其体积小、灵敏度高及抗电磁干扰等优点被广泛应用于压力测量。针对石英材料的杨氏模量较高,传统实芯光纤压力传感器的受压变形量较小,导致测量灵敏度很难提高。文章提出了一种基于游标效应的双Sagnac干涉环式光纤压力传感器。传感器由保偏光子晶体光纤(Polarization Maintaining Fiber, PM-PCF)作为敏感单元实现Sagnac干涉并通过不同PCF长度实现针对压力增敏特性的游标效应。传感器分别采用在单模光纤中嵌入PM-PCF形成传感器的参考单元和压力敏感单元,并对Sagnac环的感压部分进行封装,通过实验对并联型Sagnac环压力传感器的压力特性进行研究。实验结果表明在压力范围为0~2.4MPa内,压力传感器最大灵敏度为-54.491nm/MPa,分辨率为0.367kPa。相比无游标效应的Sagnac环压力传感器,其压力灵敏度放大了16.7倍。此外,传感器具有制造简单、结构坚固、运行稳定的优点,为高灵敏度压力传感器提供了一种替代设计方案。
Abstract
A double Sangac interference ring optical fiber pressure sensor based on vernier effect is proposed. The sensor uses polarization maintaining photonic crystal fiber (PM-PCF) as a sensitive unit to realize Sagnac interference and vernier effect for pressure sensitivity through different PCF lengths. The sensor uses PM-PCF embedded in the single-mode optical fiber to form the reference unit and pressure sensitive unit of the sensor, and the pressure sensing part of the Sagnac ring is packaged. The pressure characteristics of the parallel Sagnac ring pressure sensor are studied through experiments. The experimental results show that the maximum sensitivity of the pressure sensor is -54.491nm/MPa and the resolution is 0.367kPa in the pressure range of 0~2.4MPa. Compared with the Sagnac ring pressure sensor without vernier effect, its pressure sensitivity is amplified by 16.7 times. In addition, the sensor has the advantages of simple manufacture, solid structure and stable operation, which provides an alternative design scheme for the high-sensitivity pressure sensor.
参考文献

[1] 周文秀, 侯文博, 张海军. 光纤压力传感器在医疗领域的发展及应用[J]. 中国医疗器械杂志,2018,42(5):354-356.

[2] 孙斌. 医用光纤压力传感器用于测量食管曲张静脉压力的实验及临床研究[D]. 合肥:安徽医科大学,2016.

[3] 孙丽, 张雯, 岳川云. 几种新型光纤光栅压力传感器在结构健康监测中的应用[C]. 第八届沈阳科学学术年会论文集.沈阳,2011:568-571.

[4] Islam M, Ali M M, Lai M H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review[J]. Sensors,2014,14(4):7451-7488.

[5] 吴青伟, 赵波, 李泽军, 等. 基于压力传感器的超低功耗波导管监测系统设计[J]. 电子质量,2022(3):30-33.

[6] 赵琼, 王伟, 寇琬莹, 等. 液体填充增敏型法布里-珀罗微腔光纤温度传感器[J]. 激光与红外,2020,50(7):856-861.

[7] 赵丽娟, 梁若愚, 徐志钮. 一种新型光子晶体光纤的布里渊动态光栅传感[J]. 光学学报,2021,41(7):9-17.

[8] 冯德全, 罗小东, 樊伟, 等. 材料封装型光纤布拉格光栅宽温域应变传感性能研究[J]. 光学学报,2021,41(21):88-95.

[9] 施伟华, 吴静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报,2015,35(2):49-53.

[10] Hu Y, Chen Y, Song Q, et al. An asymmetrical dual Sagnac distributed fiber sensor for high precision localization based on time delay estimation[J]. Journal of Lightwave Technology,2021,(99):1-1.

[11] 江毅, 贾景善, 付雷, 等. 外腔式光纤Fabry-Perot干涉型高温应变传感器[J]. 光学技术,2017,43(5):423-426.

[12] 秦铂洋. 基于空心光纤的Fabry-Perot干涉仪及其传感应用研究[D]. 哈尔滨:哈尔滨工程大学,2016.

[13] 何少灵, 郝凤欢, 刘鹏飞, 等. 温度实时补偿的高精度光纤光栅压力传感器[J]. 中国激光,2015(6):174-178.

[14] 林剑涛, 曹晓峰, 祝睿雪, 等. 光纤光栅压力传感器的研究进展与趋势[J]. 光学仪器,2017,39(1):88-94.

[15] 祖鹏, 向望华, 白扬博, 等. 超低温度系数的光子晶体光纤Sagnac压力传感器[J]. 强激光与粒子束,2011,23(7):1955-1958.

[16] Qi Y, Cong B, Liu Z, et al. All-fiber sensitivity-enhanced pressure sensor based on Sagnac and FP interferometer[J]. Optik,2021,243:167359.

[17] Zhang W, Wu X, Zuo C, et al. Highly sensitive temperature and strain sensor based on fiber Sagnac interferometer with Vernier effect[J]. Optics Communications,2022,506:127543.

[18] Wu H, He L, Chen H, et al. The improved denoising algorithm of acoustic sensor based on linear optical fiber Sagnac interferometer[J]. Optical Fiber Technology,2020,60(1):102363.

[19] Feng W Q, Liu Z Y, Tam H shiY, et al. The pore water pressure sensor based on Sagnac interferometer with polarization-maintaining photonic crystal fiber for the geotechnical engineering[J]. Measurement,2016,90:208-214.

[20] Fu H Y, Wu C, Tse M L V, et al. Fiber optic pressure sensor based on polarization-maintaining photonic crystal fiber for downhole application[C]∥20th International Conference on Optical Fibre Sensors. SPIE,2009,7503:847-850.

[21] Kim D K, Kim J, Lee S L, et al. Twist-direction-discriminable torsion sensor using long-period fiber grating inscribed on polarization-maintaining photonic crystal fiber[J]. IEEE Sensors Journal,2020,20(6):2953-2961.

[22] Ding L, Gong P, Xu B. An optica1 fiber sensor based on f1uorescence 1ifetime for the detennination of sulfate ions[J]. Sensors,2021,21(3):954.

[23] Xie D H, Zhang H W, Wang G Y, et al. Sensitivity and linearity enhanced wide-detection range surface-plasmon-resonance photonic-crystal-fiber sensor[J]. Results in Physics,2021,29(4):104707.

[24] 陈浩, 徐阳, 钱森, 等. 分布式光纤超声传感器用于检测电缆接头放电故障[J]. 光学学报,2021,41(3):22-30.

[25] 王花平. 分布式光纤传感器与被测结构的界面效应影响分析[J]. 光学学报,2022,42(2):32-42.

安国文, 王立志, 牛慧青, 匡江平, 张彦军, 李秀源. 基于微结构光纤和游标效应的高灵敏度压力传感器[J]. 光学技术, 2023, 49(3): 305. AN Guowen, WANG Lizhi, NIU Huiqing, KUANG Jiangping, ZHANG Yanjun, LI Xiuyuan. High precision pressure sensor based on microstructured optical fiber and vernier effect[J]. Optical Technique, 2023, 49(3): 305.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!