量子光学学报, 2022, 28 (1): 79, 网络出版: 2022-04-21  

基于超快光学的单分子相干调制显微成像在生物医学中的应用与展望

Single-molecule Coherent Modulation Microscopy Based on Ultrafast Optics for Biomedical Research: Recent Advances and Future Perspectives
作者单位
1 山西医科大学第一医院核医学科, 分子影像精准诊疗协同创新中心山西 太原 030001
2 山西大学量子光学与光量子器件国家重点实验室, 激光光谱研究所山西 太原 030006
摘要
生命科学的发展一直伴随着显微技术的创新。基于超快光学的单分子相干调制显微成像技术在量子力学的理论基础上, 通过结合超快光学和显微技术使观测生物的微观量子现象成为可能。这篇综述首先介绍了该技术利用飞秒激光脉冲对实现了单分子量子相干态的操控, 并通过调制解调技术获得单分子周围相干信息的基本原理。然后分别介绍了其在生物方面的两个应用: (1)通过降低生物自荧光和背景噪声,实现了生物成像对比度两个数量级的提高; (2)通过提取相干可视度V获得了单分子周围微观的量子信息, 为生物体微环境的观察提供了有效手段。最后文章对基于单分子相干调制显微成像在癌症研究方面做了展望, 该方法将为癌症的早期诊断和预后评估提供新的途径。
Abstract
With the reduction of the scales in life system for human observation, many novel quantum phenomena have been gradually discovered and studied. However, the dynamic process of quantum phenomena at the microscopicscale often takes place in the time scale from femtosecond to picosecond, while conventional detection methods cannot achieve an effective observation. Based on the theory of quantum mechanics, single molecule coherent modulation microscopic imaging technology makes it possible to observe the quantum phenomena of microscopic organisms by combining ultrafast optics and microscopy. In this review, we first introduce the basic principle of single molecule coherent modulation microscopy imaging technology, which achieves the control of single molecule quantum coherent state by femtosecond laser pulse, and obtains coherent information around single molecule by modem technology. Then, two applications in biology are introduced respectively: (1) The contrast ofbiological imaging can be improved by two orders of magnitude by reducing the self-fluorescence and background noise of biology; (2) the quantum information around single molecule can be obtained by extracting the coherent visibility V, which provides an effective means for the observation of biological microenvironment. Finally, this paper prospects the early diagnosis of cancer based on single molecule coherent modulation microscopy, which will provide a new way for the early diagnosis and prognosis evaluation of cancer.
参考文献

[1] 付玲, 骆清铭. 生物医学光学成像的进展与展望[J].中国科学: 生命科学, 2020, 50(11): 1222-1236. DOI: 10.1360/SSV-2020-0263.

[2] MONDAL P P, DIASPRO A. Fundamentals of Fluorescence Microscopy[M]. Dordrecht: Springer, 2014.

[3] BETZIG E. Nobel Lecture: Single molecules, cells, and super-resolution optics[J]. Rev Mod Phys, 2015, 87(4): 1153. DOI: 10.1103/RevModPhys.87.1153.

[4] EVANS C L, XIE X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine[J]. Annu Rev Anal Chem, 2008, 1: 883-909. DOI: 10.1146/annurev.anchem.1.031207.112754.

[5] DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science (New York, NY), 1990, 248(4951): 73-76. DOI: 10.1126/science.2321027.

[6] LAMBERT N, CHEN Y N, CHENG Y C, et al. Quantum biology[J]. Nat Physics, 2013, 9(1): 10-18. DOI: 10.1038/nphys2474.

[7] MARX V. Biology begins to tangle with quantum computing[J]. Nat Methods, 2021, 18(7): 715-719. DOI: 10.1038/s41592-021-01199-z.

[8] LEI C, GODA K. ULTRAFAST OPTICS The complete optical oscilloscope[J]. Nat Photonics, 2018, 12(4): 190-191. DOI: 10.1038/s41566-018-0141-4.

[9] ZHOU H, QIN C, CHEN R, et al. Quantum Coherent Modulation-Enhanced Single-Molecule Imaging Microscopy[J]. J Phys Chem Lett, 2019, 10(2): 223-228. DOI: 10.1021/acs.jpclett.8b03606.

[10] ZHOU H, QIN C, CHEN R, et al. Accurate Investigation on the Fluorescence Resonance Energy Transfer Between Single Organic Molecules and Monolayer WSe2 by Quantum Coherent Modulation-Enhanced Single-Molecule Imaging Microscopy[J]. J Phys Chem Lett, 2019, 10: 2849-2956. DOI: 10.1021/acs.jpclett.9b00854.

[11] ZHOU H, QIN C, HAN S, et al. Visualizing Quantum Coherence Based on Single-Molecule Coherent Modulation Microscopy[J]. Nano Lett, 2021, 21(3): 1477-1483. DOI: 10.1021/acs.nanolett.0c04626.

[12] 周海涛. 单分子量子相干动力学特性研究[D]. 太原: 山西大学, 2019.

[13] HILDNER R, BRINKS D, VAN HULST N F. Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature[J]. Nat Physics, 2011, 7(2): 172-177. DOI: 10.1038/nphys1858.

[14] FEYNMAN R P, JR. F L V, HELLWARTH R W. Geometrical Representation of the Schrdinger Equation for Solving Maser Problems[J]. J Appl Phys, 1957, 28(1): 49-52. DOI: 10.1063/1.1722572.

[15] LOUDON R. The Quantum Theory of Light[M]. OUP Oxford, Oxford, 2000.

[16] SHAH M L, SAHOO A C, PULHANI A K, et al. Measurements of excited-state-to-excited-state transition probabilities and photoionization cross-sections using laser-induced fluorescence and photoionization signals[J]. J Quant Spectrosc Ra, 2014, 142: 9-16. DOI: 10.1016/j.jqsrt.2014.03.010.

[17] MITSUI M, UNNO A, MORI K. Methodology for Discriminating between Competitive Photophysical Processes in Photoblinking: Application to the Fluorescence Blinking of Single Dye Molecules Adsorbed on TiO2[J]. Chem Lett, 2017, 46(6): 866-869. DOI: 10.1246/cl.170127.

[18] HOOLEY E N, CARRO-TEMBOURY M R, VOSCH T. Probing the Absorption and Emission Transition Dipole Moment of DNA Stabilized Silver Nanoclusters[J]. J Phys Chem A, 2017, 121(5): 963-968. DOI: 10.1021/acs.jpca.6611639.

[19] TIAN Z Y, WU W W, WAN W, et al. Single-Chromophore-Based Photoswitchable Nanoparticles Enable Dual-Alternating-Color Fluorescence for Unambiguous Live Cell Imaging[J]. J Am Chem Soc, 2009, 131(12): 4245-4252. DOI: 10.1021/ja805150g.

[20] MONICI M. Cell and Tissue Autofluorescence Research and Diagnostic Applications[J]. Biotechnology Annual Review, 2005, 11: 227-256. DOI: 10.1016/s1387-2656(05)11007-2.

[21] MANSFIELD J R, GOSSAGE K W, HOYT C C, et al. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging[J]. J Biomed Opt, 2005, 10(4): 41207. DOI: 10.1117/1.2032458.

[22] CAO J S, COGDELL R J, COKER D F, et al. Quantum biology revisited[J]. Sci Adv, 2020, 6(14): eaaz4888. DOI: 10.1126/sciadv.aaz4888.

[23] MARAIS A, ADAMS B, RINGSMUTH A K, et al. The future of quantum biology[J]. J R Soc Interface, 2018, 15(148): 20180640. DOI: 10.1098/rsif.2018.0640.

[24] SIMPSON D A. Quantum probes for biology: Unlocking single molecule dynamics[J]. Nano Today, 2019, 24: 7-9. DOI: 10.1016/j.nantod.2018.12.001.

[25] NTZIACHRISTOS V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nat Methods, 2010, 7(8): 603-614. DOI: 10.1038/nmeth.1483.

[26] UTHAMACUMARAN A. A biophysical approach to cancer dynamics: Quantum chaos and energy turbulence [J]. Biosystems, 2017, 156: 1-22. DOI: 10.1016/j.biosystems.2017.03.004.

[27] HANAHAN D, WEINBERG R A. Hallmarks of Cancer: The Next Generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.

[28] OGRYZKO V V. A quantum-theoretical approach to the phenomenon of directed mutations in bacteria (hypothesis)[J]. Biosystems, 1997, 43(2): 83-95. DOI: https://doi.org/10.1016/S0303-2647(97)00030-0.

[29] MCFADDEN J. Quantum evolution[M]. New York · London, WW Norton & Company, 2000.

[30] RIEPER E, ANDERS J, VEDRAL V. Quantum entanglement between the electron clouds of nucleic acids in DNA[J]. 2010. arXiv preprint arXiv:10064053. [quant-ph].

[31] DJORDJEVIC I B. Quantum biological information theory[M]. Switzerland, Springer, 2016.

周海涛, 姚伟, 秦成兵, 肖连团, 贾锁堂, 武志芳, 李思进. 基于超快光学的单分子相干调制显微成像在生物医学中的应用与展望[J]. 量子光学学报, 2022, 28(1): 79. ZHOU Hai-tao, YAO Wei, QIN Cheng-bing, XIAO Lian-tuan, JIA Suo-tang, WU Zhi-fang, LI Si-jin. Single-molecule Coherent Modulation Microscopy Based on Ultrafast Optics for Biomedical Research: Recent Advances and Future Perspectives[J]. Acta Sinica Quantum Optica, 2022, 28(1): 79.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!