激光技术, 2023, 47 (6): 841, 网络出版: 2023-12-05  

基于气相沉积法的掺铒光纤制备与温度特性

Fabrication and temperature characteristics of erbium-doped fiber based on chemical vapor deposition
作者单位
中国电子科技集团公司第四十六研究所,天津 300220
摘要
为了研制温度稳定性满足中高精度光纤陀螺仪中超荧光光源使用要求的掺铒光纤,采用螯合物气相沉积法制备了Al-Er共掺和Al-Ge-Er共掺两种掺铒光纤。同时对两种光纤的吸收系数和本底损耗进行了测试研究,并搭建超荧光光源测试平台,对Al-Ge-Er共掺光纤的温度稳定性进行了实验验证。结果表明,在制备光纤时通入等量的铒的螯合物,Al-Er共掺光纤具有更高的吸收系数,但本底损耗较高; 两种光纤在1530 nm的吸收系数分别为35.6 dB/m和20.0 dB/m,在1200 nm的本底损耗为31.7 dB/km和6.3 dB/km; 在-45.0 ℃~70.0 ℃变温范围内,Al-Ge-Er共掺光纤的自发辐射光谱在中心波长为1560.84 nm,10.51 nm带宽的平均波长变化约为6.52×10-7 nm/℃,该光纤可满足高精度光纤陀螺的超荧光光源使用要求。该研究为掺铒光纤的研制提供了参考。
Abstract
In order to develop erbium-doped fibers with temperature stability to achieve the requirements of super-fluorescent light sources for medium and high precision fiber optic gyroscopes, two types of erbium-doped fibers, Al-Er co-doped and Al-Ge-Er co-doped were prepared by a chelate vapour deposition method. The absorption coefficients and background losses of the two fibers were measured, and the temperature stability of the Al-Ge-Er co-doped fibers was verified experimentally by building a test platform for the super fluorescent light source. The study shows that the Al-Er co-doped fibers have higher absorption coefficients but worse background losses when they are fabricated with an equal volume of erbium chelate. The absorption coefficients of the two fibers are 35.6 dB/m and 20.0 dB/m at 1530 nm, and the background losses are 31.7 dB/km and 6.3 dB/km at 1200 nm. In the temperature range of -45.0 ℃~ 70.0 ℃, the spontaneous emission spectrum mean wavelength variation of the Al-Ge-Er co-doped fiber fabricated by chelate vapor deposition method is about 6.52×10-7 nm/℃ at the central wavelength of 1560.84 nm with the bandwidth of 10.51 nm. This fiber can achieve the requirements of a super-fluorescent light source for high precision fiber optic gyroscope. And this study provides a reference for the development of erbium-doped optical fibers.
参考文献

[1] POOLE S B, PAYNE D N, FERMANN M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 17(21): 737-738.

[2] LIU Sh Sh, ZHANG L, WEI H M, et al. Study on amplification of ring-core erbium-doped vortex fibers[J]. Chinese Journal of Lasers,2023,50(10):1006003(in Chinese).

[3] ZHANG B, ZHANG E T, HU X Ch, et al. Amplification characteristics of multiwavelength erbium-doped fiber laser amplifiers[J]. Laser Technology, 2018, 42(3): 325-330(in Chinese).

[4] HAO Y Q, JIA R Y, DING B B, et al. Research of optimized wide-bandwidth optical source with Er3+-doped fiber amplified spontaneous emission[J].Laser Technology, 2023,47(4):500-505(in Chin-ese).

[5] OU P, CAO B, ZHANG Ch X, et al. Analysis of mean-wavelength stability of Er-doped super fluorescent fiber sources[J]. Laser & Optoelectronics Progress, 2008,45(5): 26-30(in Chinese).

[6] GUILLAUMOND D, MEUNIER J P. Comparison of two flattening techniques on a double-pass erbium-doped superfluorescent fiber source for fiber-optic gyroscope[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 17-21.

[7] QIU J L, WANG L, HUANG T Ch, et al. Review of development of interferometric fiber-optic gyroscopes[J]. Acta Optica Sinica, 2022, 42(17): 1706004(in Chinese).

[8] SODERLUND M, TAMMELA S, HOFFMAN H J, et al. Direct nano-particle deposition builds active fibers[J]. Laser Focus World, 2006, 42(1): 103-111.

[9] TAMMELA S, KIIVERI P, SARKILAHTI S, et al. Direct nanoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers[C]//2002 28th European Conference on Optical Communication. New York, USA: IEEE, 2002: 1-2.

[10] KIR′YANOV A V, BARMENKOV Y O, SANDOVAL-ROMERO G E, et al. Er3+ concentration effects in commercial erbium-doped silica fibers fabricated through the MCVD and DND technologies[J]. IEEE Journal of Quantum Electronics, 2013, 49(6): 511-521.

[11] FU Y J, JIAN W, ZHENG K, et al. Refractive index control in fabrication of erbium doped fiber[J].Chinese Journal of Lasers, 2006, 33(3): 347-350(in Chinese).

[12] CHENG Y Sh. The research on erbium-doped and erbium-ytterbium co-doped fibers for 1.5 μm fiber laser[D]. Wuhan: Huazhong University of Science & Technology, 2020: 45-58(in Chinese).

[13] GAO Y M, FENG G, LIU Y J, et al. Manufacture of erbium-doped optica fiber[J]. Infrared and Laser Engineering, 2009, 38(3): 515-519(in Chinese).

[14] YANG Q, JIAO Y, YU C, et al. Gain and laser performance of heavily Er-doped silica fiber fabricated by MCVD combined with the sol-gel method[J]. Chinese Optics Letters, 2021, 19(11): 110603.

[15] BISWAS A, MACIEL G S, KAPOOR R, et al. Er3+-doped multicomponent sol-gel-processed silica glass for optical signal amplification at 1.5 μm[J]. Applied Physics Letters, 2003, 82(15): 2389-2391.

[16] LIU Zh M. Study and fabrication of single mode large-mode-diameter high concentration erbium doped fibers and related device[D]. Beijing: Beijing Jiaotong University, 2012: 59-91(in Chinese).

[17] GU Zh M, CHU Y B, LI H Q, et al. Fabrication and amplification characteristics of multicore erbium-doped fiber[J]. Chinese Journal of Lasers, 2022, 49(9): 0906003(in Chinese).

[18] HE L, CHU Y B, DAI N L, et al. Silicate-based erbium-doped fiber extended to L-band and its amplification performance[J]. Acta Physica Sinica, 2022, 71(15): 154204(in Chinese).

[19] LENARDIC B, KVEDER M. Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers[C]//2009 Optical Fiber Communication Conference. New York, USA: IEEE, 2009: 1538-1540.

[20] ANUAR K, MUHD-YASIN S Z, ZULKIFLI M I, et al. Er2O3-Al2O3 doped silica preform prepared by MCVD-chelate vapor phase delivery technique[J]. Advanced Materials Research, 2014, 896: 219-224.

[21] SAHA M, PAL A, SEN R. Vapor phase doping of rare-earth in optical fibers for high power laser[J]. IEEE Photonics Technology Le-tters, 2014, 26(1): 58-61.

[22] XU H J, DU S H. Temperature dependence of absorption and emi-ssion cross sections in erbium-doped fibers[J]. Laser & Optoelectronics Progress, 2014, 51(10): 100601(in Chinese).

武洋, 潘蓉, 杨鹏, 衣永青. 基于气相沉积法的掺铒光纤制备与温度特性[J]. 激光技术, 2023, 47(6): 841. WU Yang, PAN Rong, YANG Peng, YI Yongqing. Fabrication and temperature characteristics of erbium-doped fiber based on chemical vapor deposition[J]. Laser Technology, 2023, 47(6): 841.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!