硅酸盐通报, 2023, 42 (4): 1496, 网络出版: 2023-06-12  

AOD炉渣对镁钙质耐火材料的侵蚀机理

Corrosion Mechanism of AOD Slag on Magnesia Calcium Refractories
作者单位
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室, 武汉 430081
2 广西北港新材料有限公司, 北海 536000
3 淄博市发展改革委, 淄博 255000
摘要
采用静态坩埚法将AOD炉渣线区镁钙砖在1 700 ℃空气气氛下高温热处理3 h后进行抗渣试验。结合XRD、SEM、EDS等测试手段, 分析了AOD炉两个阶段炉渣对渣线区镁钙砖的侵蚀机理。结果表明: 低碱度的氧化期炉渣对镁钙砖侵蚀明显, 炉渣在表面张力和毛细管力作用下, 进入镁钙砖内部与CaO反应生成低熔点的铁酸二钙2CaO·Fe2O3(C2F), 促进砖中CaO溶解, 破坏了原有的致密结构, 使反应层结构变得疏松、易剥落; 镁钙砖中方镁石晶簇吸收液态渣中的铁、铬、锰氧化物, 并在其晶内和晶间形成复合尖晶石结构, 从而提高镁钙砖表面渣的黏度, 减缓渣的侵蚀; 还原期炉渣碱度较高, 对镁钙砖的侵蚀作用较弱, 主要表现为SiO2向砖内侵蚀渗透, 以及体积效应和温度梯度导致镁钙砖表面小尺寸方镁石晶簇向渣中剥落。
Abstract
The slag resistance test of MgO-CaO bricks in slag line area of AOD furnace was carried out by means of static crucible method after high temperature heat treatment at 1 700 ℃ for 3 h in air atmosphere. The corrosion mechanism of two kinds of AOD furnace slags on MgO-CaO bricks in slag area of AOD furnace was analyzed by means of XRD, SEM and EDS. The results show that the oxidation period slag with low alkalinity has obvious corrosion on MgO-CaO bricks. Under the action of surface tension and capillary force, the slag enters MgO-CaO bricks and reacts with CaO to form dicalcium ferrite (2CaO·Fe2O3, C2F) with low melting point, which promotes the dissolution of CaO and destroys the origin compact structure. The structure of reaction layer becomes loose, cracked and easy to peel off. The periclase crystal cluster in MgO-CaO bricks absorbs iron oxide, chromium oxide and manganese oxide in liquid slag and forms a composite spinel structure within and between its crystals in order to improve the viscosity of liquid slag on the surface of MgO-CaO bricks and slow down the corrosion of slag on MgO-CaO bricks. The alkalinity of reduction period slag is high and the corrosion effect on MgO-CaO bricks is weak, which is mainly manifested in the corrosion and penetration of SiO2 into the bricks, and the volume effect and temperature gradient cause the peeling of small periclase crystal cluster on the surface of MgO-CaO bricks into slag.
参考文献

[1] 刘振宝, 梁剑雄, 杨 哲, 等. 高强度不锈钢应用及研究进展[J]. 中国冶金, 2022, 32(6): 42-53.

[2] 石 锋, 崔文芳, 王立军, 等. 高氮奥氏体不锈钢研究进展[J]. 上海金属, 2006, 28(5): 45-50.

[3] 刘 浏. 炉外精炼工艺技术的发展[J]. 炼钢, 2001, 17(4): 1-7.

[4] 苏天森. 炉外处理技术的发展和优化[J]. 中国冶金, 2004, 14(2): 1-6.

[5] 曹志强. 氩氧精炼工艺是铁合金精炼技术的发展方向[J]. 中国冶金, 2016, 26(8): 69-74.

[6] 钱 凡, 段雪珂, 杨文刚, 等. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.

[7] 张宁轩, 肖国庆, 段 锋, 等. 铜冶炼阳极炉镁铬质耐火材料损毁机理[J]. 硅酸盐学报, 2021, 49(9): 2025-2035.

[8] 高永亮, 李东波. CR炉用镁铬质耐火材料的侵蚀机理分析[J]. 中国有色冶金, 2021, 50(5): 78-84.

[9] 姜新平, 梁 军, 俞海明. 一种废弃RH镁铬砖无害化处理的工艺: CN201410057398.2[P]. 2014-07-09.

[10] 魏明坤, 曾利红, 刘丽君. 镁钙系耐火材料的研究进展[J]. 材料与冶金学报, 2005, 4(3): 201-205.

[11] 陈树江, 田 琳, 李国华. 镁钙系耐火材料[M]. 北京: 冶金工业出版社, 2012.

[12] SALMAN G-K, EBRAHIM K, HASSAN G D, et al. A review on recent advances on magnesia-doloma refractories by nano-technology[J]. Journal of Water and Environmental Nanotechnology, 2017, 2(3): 206-222.

[13] 陈庆明, 魏 同. 中国镁质耐火原料的发展现状和展望[J]. 耐火材料, 2013, 47(3): 210-214.

[14] 张国栋, 袁政禾, 游杰刚. 辽宁省菱镁矿及镁质耐火材料产业的发展战略[J]. 耐火材料, 2008, 42(3): 219-222.

[15] 朱伯铨, 方斌祥, 张文杰, 等. LF炉精炼渣对烧成镁钙砖的侵蚀机制研究[J]. 耐火材料, 2010, 44(2): 81-84.

[16] 郭红涛. AOD炉炉衬侵蚀分析方法的研究[D]. 长春: 长春工业大学, 2018: 7-10.

[17] SHAHRAKI A, GHASEMI-KAHRIZSANGI S, NEMATI A. Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3[J]. Materials Chemistry and Physics, 2017, 198: 354-359.

[18] GHASEMI-KAHRIZSANGI S, KARAMIAN E, GHEISARI DEHSHEIKH H. The impact of ZrSiO4 nanoparticles addition on the microstructure and properties of dolomite based refractories[J]. Ceramics International, 2017, 43(16): 13932-13937.

[19] SOLTAN A M, WENDSCHUH M, WILLIMS H, et al. Densification and resistance to hydration and slag attack of ilmenite-doped MgO-dolomite refractories in relation to their thermal equilibrium and microfabric[J]. Journal of the European Ceramic Society, 2014, 34(8): 2023-2033.

[20] 李金锋, 王 黎, 漆小鹏, 等. 二茂铁含量对不烧镁钙系耐火材料性能的影响[J]. 耐火材料, 2021, 55(1): 64-68.

[21] 冯海霞, 柳 军. VOD炉用烧成镁钙砖的抗渣侵蚀机制分析[J]. 耐火材料, 2015, 49(6): 452-453+457.

[22] 孙敬焘, 郭兴敏. 含氟铁矿石烧结过程中枪晶石的生成及其与铁酸钙的作用[J]. 过程工程学报, 2017, 17(3): 565-570.

王恭一, 赵惠忠, 黄日清, 张寒, 余俊, 李学臣. AOD炉渣对镁钙质耐火材料的侵蚀机理[J]. 硅酸盐通报, 2023, 42(4): 1496. WANG Gongyi, ZHAO Huizhong, HUANG Riqing, ZHANG Han, YU Jun, LI Xuechen. Corrosion Mechanism of AOD Slag on Magnesia Calcium Refractories[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1496.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!