人工晶体学报, 2022, 51 (11): 1967, 网络出版: 2023-01-03  

新型BT-BMT-xBNT无铅高储能密度陶瓷研究

Novel BT-BMT-xBNT Lead-Free Ceramics with High Energy Storage Density
作者单位
1 国网陕西省电力有限公司电力科学研究院, 西安 710100
2 国网(西安)环保技术中心有限公司, 西安 710100
3 国网陕西省电力有限公司, 西安 710048
4 国网陕西省电力有限公司渭南供电公司, 渭南 714000
5 国家电网有限公司, 北京 100031
摘要
本文采用传统固相反应法, 成功制备了新型无铅弛豫铁电陶瓷(1-x)[0.9BaTiO3-0.1Bi(Mg0.25Ta0.5)O3]-xBi0.5Na0.5TiO3。结果表明, 较高居里温度的Bi0.5Na0.5TiO3的引入, 使得材料体系中建立了更多的以Bi-O耦合为主的极性纳米区域, 弥补了因Bi(Mg0.25Ta0.5)O3的加入导致的宏观极化强度的减少, 提高了材料的饱和极化强度, 实现了较高储能密度的同时具有更好的温度稳定性。在245 kV/cm电场强度下, x=0.2样品的储能密度约为4.01 J/cm3, 储能效率约为84.86%, 同时该组分在20~170 ℃储能密度的变化率小于5%, 储能效率的变化率小于6%, 表现出优异的温度稳定性。
Abstract
In this work, novel lead-free relaxor ferroelectric (1-x)[0.9BaTiO3-0.1Bi(Mg0.25Ta0.5)O3]-xBi0.5Na0.5TiO3ceramics were synthesized via composite strategy using the traditional solid-state process. Results indicate that the incorporation of Bi0.5Na0.5TiO3 with a high Curie temperature could not only significantly enhance the energy storage density, but also improve the temperature stability. As BNT concentration rose, the nano-scale polarization mismatch dominated by Bi-O coupling was established and enhanced, significantly compensating for the reduction of macroscopic polarization due to the addition of Bi(Mg0.25Ta0.5)O3, leading to elevate saturation polarization and improve temperature stability. The ceramics which x is 0.2 show optimal energy storage features with a high energy storage density of 4.01 J/cm3 in the electric field of 245 kV/cm combined with a relatively high energy storage efficiency of 84.86%. Moreover, excellent temperature stabilities were noticed with the change rate of energy storage density is less than 5% and energy storage efficiency is less than 6% over a broad temperature range (20~170 ℃).
参考文献

[1] YANG Z T, DU H L, JIN L, et al. A new family of sodium niobate-based dielectrics for electrical energy storage applications[J]. Journal of the European Ceramic Society, 2019, 39(9): 2899-2907.

[2] LI Y, LIU Y, TANG M Y, et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process[J]. Chemical Engineering Journal, 2021, 419: 129673.

[3] CHEN X L, LI X, ZHOU H F, et al. Simultaneously achieved high energy density and excellent thermal stability of lead-free Barium titanate-based relaxor ferroelectric under low electric field[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(17): 15912-15922.

[4] GAO J H, XUE D Z, LIU W F, et al. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications[J]. Actuators, 2017, 6(3): 24.

[5] ZHAO X B, ZHOU Z Y, LIANG R H, et al. High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications[J]. Ceramics International, 2017, 43(12): 9060-9066.

[6] HU Q Y, JIN L, WANG T, et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics[J]. Journal of Alloys and Compounds, 2015, 640: 416-420.

[7] WANG Q, GONG P M, WANG C M. High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3-Bi(Zn1/2Zr1/2)O3 relaxor ferroelectrics[J]. Ceramics International, 2020, 46(14): 22452-22459.

[8] YUAN Q B, LI G, YAO F Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics[J]. Nano Energy, 2018, 52: 203-210.

[9] ZHAO P Y, CHEN L L, LI L T, et al. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design[J]. Journal of Materials Chemistry A, 2021, 9(46): 25914-25921.

[10] QIN W J, ZHAO M, LI Z M, et al. High energy storage and thermal stability under low electric field in Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn0.25Ta0.5)O3 ceramics[J]. Chemical Engineering Journal, 2022, 443: 136505.

[11] SUZUKI K, KIJIMA K. Size driven phase transition of Barium titanate nanoparticles prepared by plasma chemical vapor deposition[J]. Journal of Materials Science, 2005, 40(5): 1289-1292.

[12] LIU Z G, LI M D, TANG Z H, et al. Enhanced energy storage density and efficiency in lead-free Bi(Mg1/2Hf1/2)O3-modified BaTiO3 ceramics[J]. Chemical Engineering Journal, 2021, 418: 129379.

[13] LIU G, LI Y, GUO B, et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free Barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering[J]. Chemical Engineering Journal, 2020, 398: 125625.

[14] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage[J]. Ceramics International, 2019, 45(3): 3582-3590.

[15] LI W B, ZHOU D, PANG L X, et al. Novel Barium titanate based capacitors with high energy density and fast discharge performance[J]. Journal of Materials Chemistry A, 2017, 5(37): 19607-19612.

[16] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability[J]. Journal of Materials Chemistry C, 2018, 6(31): 8528-8537.

雷磊, 吴健, 董子晗, 卢林, 李旭, 王良, 万昊. 新型BT-BMT-xBNT无铅高储能密度陶瓷研究[J]. 人工晶体学报, 2022, 51(11): 1967. LEI Lei, WU Jian, DONG Zihan, LU Lin, LI Xu, WANG Liang, WAN Hao. Novel BT-BMT-xBNT Lead-Free Ceramics with High Energy Storage Density[J]. Journal of Synthetic Crystals, 2022, 51(11): 1967.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!