应用激光, 2023, 43 (4): 135, 网络出版: 2023-11-17  

相位全息图几何参数变换对艾里光束的影响分析

Analysis of the Influence of Phase Hologram Geometric Parameter Transformation on Airy Beam
作者单位
1 湖北工业大学机械工程学院现代制造质量工程湖北省重点实验室, 湖北 武汉 430068
2 湖北理工学院智能输送技术与装备湖北省重点实验室, 湖北 黄石 435000
摘要
艾里光束具有无衍射、自加速和自愈合三大特性, 其中自加速特性最吸引人。为更全面了解艾里光束的自加速特性, 在保证其轨迹完整的前提下, 基于几何变换改变相位图中立方相位的相对位置和旋转角度来探究艾里光束的加速特性, 利用傅里叶光学推导出对应的光谱公式进行验证。结果表明, 相位图几何变换调制可以显著改变艾里光束的传播轨迹位置和空间偏转位置。研究对艾里光束的自加速特性领域及应用提供了更全面的认识, 对控制其他加速光束的理解提供了新的思路。
Abstract
Airy beams have three major properties: non-diffraction, self-acceleration, and self-healing, among which the self-acceleration property is the most attractive. To fully understand the Airy beam's self-acceleration characteristics and to ensure its trajectory's integrity, the relative position and rotation angle of the cubic phase in the phase diagram was changed based on geometric transformation to explore the transmission characteristics of the Airy beam. Fourier optics was used to derive the corresponding spectral formula. The results show that the phase map geometric transformation modulation can significantly change the position of the propagation trajectory and the spatial deflection of the Airy beam. This study provides a more comprehensive understanding of the field and application of the self-accelerating properties of Airy beams and provides new ideas for the understanding of controlling other accelerated beams.
参考文献

[1] ANAYA-CONTRERAS J A, ZU′N~IGA-SEGUNDO A, MOYA-CESSA H M. Airy beam propagation:Autofocusing, quasi-adiffractional propagation, and self-healing[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2021, 38(5): 711-718.

[2] 陈志刚, 许京军, 胡毅, 等. 自加速光的调控及其新奇应用[J]. 光学学报, 2016, 36(10): 1026009.

[3] CHU X X, ZHOU G Q, CHEN R P. Analytical study of the self-healing property of Airy beams[J]. Physical Review A, 2012, 85: 013815.

[4] 李元成, 张伟, 张晓兵, 等. 非晶合金脉冲激光加工适应性[J]. 应用激光, 2022, 42(3): 104-110.

[5] 钟绪浪, 罗又辉, 王瑾, 等. 准连续光纤激光器电源控制系统研究[J]. 应用激光, 2021, 41(2): 404-411.

[6] 杨光远, 杨俊鹏, 彭三文, 等. 不同光栅对光束整形效果的影响分析[J]. 应用激光, 2021, 41(6): 1328-1333.

[7] BERRY M V, BALAZS N L.Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267.

[8] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981.

[9] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

[10] SCHLEY R, KAMINER I, GREENFIELD E, et al. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles′ trajectories[J]. Nature Communications, 2014, 5(1): 1-7.

[11] ZHAO J Y, CHREMMOS I D, SONG D H, et al. Curved singular beams for three-dimensional particle manipulation[J]. Scientific Reports, 2015, 5(1): 1-6.

[12] POLYNKIN P, KOLESIK M, MOLONEY J V, et al. Curved plasma channelgeneration using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.

[13] LIBSTER-HERSHKO A, EPSTEIN I, ARIE A. Rapidly accelerating Mathieu and Weber surface plasmon beams[J]. Physical Review Letters, 2014, 113(12): 123902.

[14] MINOVICH A E, KLEIN A E, NESHEV D N, et al. Airy plasmons:Non-diffracting optical surface waves[J]. Laser & Photonics Reviews, 2014, 8(2): 221-232.

[15] ZHANG J G, LI Y F, TIAN Z W, et al. Controllable autofocusing properties of conical circular airy beams[J]. Optics Communications, 2017, 391: 116-120.

[16] LI T, ZI F, HUANG K K, et al. Multifocus autofocusing airy beam[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2017, 34(9): 1530-1534.

[17] MATHIS A, COURVOISIER F, FROEHLY L, et al. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams[J]. Applied Physics Letters, 2012, 101(7): 071110.

[18] 李佳群, 闫剑锋, 李欣, 等. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光, 2021, 48(2): 0202019.

[19] 刘毅. 飞秒激光可控弯曲结构加工新方法及其应用[D]. 北京: 北京理工大学, 2016.

[20] GREENFIELD E, SEGEV M, WALASIK W, et al. Accelerating light beams along arbitrary convex trajectories[J]. Physical Review Letters, 2011, 106(21): 213902.

[21] FROEHLY L, COURVOISIER F, MATHIS A, et al. Arbitrary accelerating micron-scale caustic beams in two and three dimensions[J]. Optics Express, 2011, 19(17): 16455-16465.

[22] MATHIS A, COURVOISIER F, GIUST R, et al. Arbitrary nonparaxial accelerating periodic beams and spherical shaping of light[J]. Optics Letters, 2013, 38(13): 2218-2220.

[23] LING J Y, YANG Q Y, ZHANG S X, et al. Improved generation method utilizing a modified Fourier spectrum for Airy beams with the phase-only filter technique[J]. Applied Optics, 2017, 56(25): 7059-7066.

[24] 柯熙政, 宋强强, 王姣. 衰减因子和横向尺度对Airy光束三大特性的影响[J]. 红外与激光工程, 2017, 46(9): 164-172.

[25] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209.

刘春利, 翟中生, 张骆, 刘顿, 成健, 陶青. 相位全息图几何参数变换对艾里光束的影响分析[J]. 应用激光, 2023, 43(4): 135. Liu Chunli, Zhai Zhongsheng, Zhang Luo, Liu Dun, Cheng Jian, Tao Qing. Analysis of the Influence of Phase Hologram Geometric Parameter Transformation on Airy Beam[J]. APPLIED LASER, 2023, 43(4): 135.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!