硅酸盐学报, 2022, 50 (10): 2746, 网络出版: 2023-01-22  

蒙脱石微球的可控制备及其载药性能

Preparation and Drug Loading Properties of Montmorillonite Microspheres
翟婧 1,2,3廖娟 4陈莹 1,2,3唐爱东 1,2,3,5杨华明 1,2,3,4
作者单位
1 中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心, 武汉430074
2 中国地质大学(武汉)材料与化学学院, 武汉430074
3 中国非金属矿行业矿物功能材料重点实验室, 武汉430074
4 中南大学资源加工与生物工程学院, 长沙410083
5 中南大学化学化工学院, 长沙410083
摘要
针对口服给药体系如何保护药物分子免受人体内环境影响这一挑战, 采用乳化凝胶法设计合成了一种pH值敏感性的海藻酸钠(SA)-蒙脱石(MMT)复合微球MMT/SA, 用以负载抗癌药物盐酸阿霉素(DOX), 在保护药物分子的同时克服了胃肠道的生物化学屏障。探索了MMT处理工艺和合成配比的不同对微球形貌的影响, 最终控制微球尺寸在20 μm以内, 且分布均一。复合载药微球DOX/MMT/SA的载药率为14.7%, 在模拟人工胃液和人工肠液环境中表现出不同的药物缓释效果, 在模拟人工肠液中的累计释放率(31.7%)明显高于在人工胃液中的释放率(15.8%), 且对人结肠癌细胞有明显的杀伤效果。
Abstract
Aiming at the challenge of how oral drug delivery systems protect drug molecules from environmental influences in human body, a pH value-sensitive sodium alginate-montmorillonite composite microsphere (MMT/SA) was synthesized by an emulsification gel method, which was used to load anticancer drug doxorubicin hydrochloride (DOX), and overcome the biochemical barrier of gastrointestinal tract while protecting drug molecules. The effect of raw material (MMT pretreatment and content) on the morphology of microspheres was investigated, and the size of microspheres with a uniform distribution was controlled to be 20 μm. The drug loading rate of DOX/MMT/SA is 14.7%, indicating different drug release effects in simulated gastric juice and artificial intestinal juice. The cumulative release rate of DOX/MMT/SA in simulated gastric juice (i.e., 31.7%) is greater than that in artificial gastric juice (i.e., 15.8%), and it has a killing effect on the cancer cells.
参考文献

[1] PAN XIAOQIAN, XIONG XIANGYUAN. Advances in research of oral Anticancer drug nanocarrier[J]. China Biotechnol, 2018, 38(9): 65-73.

[2] ENSIGN LAURA M, CONE RICHARD, HANES JUSTIN. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers[J]. Adv Drug Deliver Rev, 2012, 64(6): 557-570.

[3] LAI SAMUEL K, WANG YINGYING, HANES JUSTIN. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues[J]. Adv Drug Deliver Rev, 2009, 61(2): 158-171.

[4] PALACIO JULIANA, OROZCO VCTOR H, LPE BETTY L. Effect of the molecular weight on the physicochemical properties of Poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption[J]. J Brazil Chem Soc, 2011, 22(12): 2304-2311.

[5] PANDEY SANJEEV K, GHOSH SOMENATH, MAITI PRALAY, et al. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer[J]. Int J Biol Macromol, 2015, 72: 309-319.

[6] MUTHU MADASWAMY S, SINGH SANJAY. Studies on biodegradable polymeric nanoparticles of risperidone: In vitro and in vivo evaluation[J]. Nanomedicine-UK, 2008, 3(3): 305-319.

[7] CHAWLA JUGMINDER S, AMIJI MANSOOR M. Biodegradable poly(?倷-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen[J]. Int J Pharm, 2002, 249(1/2): 127-138.

[8] XIE Xiaoxia, TAO Qing, ZOU Yina. PLGA Nanoparticles Improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms[J]. J Agric Food Chem, 2011, 59(17): 9280-9289.

[9] ZHAO Lingyun, FENG Sishen. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: In vitro and in vivo studies[J]. J Pharm Sci, 2010, 99(8): 3552-3560.

[10] CAO Lianqi, LU Wei, MATA ANALUCIA, et al. Egg-box model-based gelation of alginate and pectin: A review[J]. Carbohyd Polym, 2020, 242: 116389.

[11] GRASDALEN HANS, LARSEN BJORN, SMIDSROD OLAV. 13C-N.M.R. studies of monomeric composition and sequence in alginate[J]. Carbohyd Res, 1981, 89: 179-191.

[12] GU Luping, MCCLEMENTS David Julian, LI Jiaying, et al. Formulation of alginate/carrageenan microgels to encapsulate, protect and release immunoglobulins: Egg Yolk IgY[J]. Food Hydrocoll, 2021, 112(3): 106349.

[13] CIRONE PASQUALE, BOURGEOIS JACQUELINE M, AUSTIN RICHARD C, et al. A novel approach to tumor suppression with microencapsulated recombinant cells[J]. Hum Gene Ther, 2002, 13(10): 1157-1166.

[14] YUAN Xiaolu, LI Baoxia, HUANG Yayan, et al. Progress in preparation and application of sodium alginate microcapsules[J/OL]. Chem Ind Eng Proc (China), [2021-11-09]. https://doi.org/10.16085/ j.issn.1000-6613.

[15] AWAD MAHMOUD E, LPEZ-GALINDO ALBERTO, SETTI MASSIMO. Kaolinite in pharmaceutics and biomedicine[J]. Int J Pharm, 2017, 533(1): 34-48.

[16] MORAES JEMIMA DANIELA DIAS, BERTOLINO SILVANA RAQUEL ALINA, CUFFINI SILVIA LUCIA, et al. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review[J]. Int J Pharm, 2017, 534: 213-219.

[17] REDDY O SREEKANTH, SUBHA MCS, JITHENDRA T, et al. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery[J]. J Pharm Anal, 2021, 11(2): 191-199.

[18] KEVADIYA BHAVESH D, JOSHI G HANSHYAM V, PATEL HASMUKH A, et al. Montmorillonite-alginate nanocomposites as a drug delivery system: Intercalation and in vitro release of vitamin B1 and vitamin B6[J]. J Biomater Appl, 2010, 25(2): 161-177.

[19] ILIESCU RUXANDRA IRINA, ANDRONESCU ECATERINA, GHITULICA CRISTINA DANIELA, et al. Montmorillonite-alginate nanocomposite as a drug delivery system-incorporation and in vitro release of irinotecan[J]. Int J Pharm, 2014, 463(2): 184-192.

[20] NIDHI, RASHID MUZAMIL, KAUR VEERPAL. Microparticles as controlled drug delivery carrier for the treatment of ulcer-ative colitis: A brief review[J]. Saudi Pharm J, 2016, 24(4): 458-472.

翟婧, 廖娟, 陈莹, 唐爱东, 杨华明. 蒙脱石微球的可控制备及其载药性能[J]. 硅酸盐学报, 2022, 50(10): 2746. ZHAI Jing, LIAO Juan, CHEN Ying, TANG Aidong, YANG Huaming. Preparation and Drug Loading Properties of Montmorillonite Microspheres[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2746.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!