激光与光电子学进展, 2023, 60 (11): 1106007, 网络出版: 2023-06-05   

OFDR分布式光纤温度/应变/形状传感研究进展 下载: 842次特邀综述

Research on Distributed Fiber Temperature/Strain/Shape Sensing Based on OFDR
付彩玲 1,2彭振威 1,2李朋飞 1,2孟彦杰 1,2钟华健 1,2杜超 1,2王义平 1,2,3,*
作者单位
1 深圳大学射频异质异构集成全国重点实验室,广东省光纤传感技术粤港联合研究中心,深圳市 物联网光子器件与传感系统重点实验室,广东 深圳 518060
2 深圳大学物理与光电工程学院光电子器件与系统教育部/广东省重点实验室,深圳市 超快激光微纳制造重点实验室,广东 深圳 518060
3 人工智能与数字经济广东省实验室(深圳),广东 深圳 518107
引用该论文

付彩玲, 彭振威, 李朋飞, 孟彦杰, 钟华健, 杜超, 王义平. OFDR分布式光纤温度/应变/形状传感研究进展[J]. 激光与光电子学进展, 2023, 60(11): 1106007.

Cailing Fu, Zhenwei Peng, Pengfei Li, Yanjie Meng, Huajian Zhong, Chao Du, Yiping Wang. Research on Distributed Fiber Temperature/Strain/Shape Sensing Based on OFDR[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106007.

参考文献

[1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151-1158.

[2] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79.

[3] Hopkins H H, Kapany N S. A flexible fibrescope, using static scanning[J]. Nature, 1954, 173(4392): 39-41.

[4] 刘德明, 贺韬, 许志杰, 等. 新型微结构光纤分布式声波传感技术及应用[J]. 应用科学学报, 2020, 38(2): 296-309.

    Liu D M, He T, Xu Z J, et al. New type of microstructure-fiber distributed acoustic sensing technology and its applications[J]. Journal of Applied Sciences, 2020, 38(2): 296-309.

[5] Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 2005, 23(6): 2081-2087.

[6] Ding Z Y, Wang C H, Liu K, et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: a review[J]. Sensors, 2018, 18(4): 1072.

[7] Li P F, Fu C L, Du B, et al. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR[J]. Journal of Lightwave Technology, 2021, 39(19): 6334-6339.

[8] Song J, Li W H, Lu P, et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 2014, 6(3): 6801408.

[9] Kreger S T, Sang A K, Gifford D K, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[J]. Proceedings of SPIE, 2009, 7316: 73160A.

[10] Beisenova A, Issatayeva A, Korganbayev S, et al. Simultaneous distributed sensing on multiple MgO-doped high scattering fibers by means of scattering-level multiplexing[J]. Journal of Lightwave Technology, 2019, 37(13): 3413-3421.

[11] Meng Y J, Fu C L, Chen L, et al. Submillimeter-spatial-resolution φ-OFDR strain sensor using femtosecond laser induced permanent scatters[J]. Optics Letters, 2022, 47(23): 6289-6292.

[12] Canning J. Fibre gratings and devices for sensors and lasers[J]. Laser & Photonics Review, 2008, 2(4): 275-289.

[13] Lu P, Mihailov S J, Coulas D, et al. Low-loss random fiber gratings made with an fs-IR laser for distributed fiber sensing[J]. Journal of Lightwave Technology, 2019, 37(18): 4697-4702.

[14] Yan A D, Huang S, Li S, et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations[J]. Scientific Reports, 2017, 7(1): 1-9.

[15] Loranger S, Gagné M, Lambin-Iezzi V, et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 2015, 5(1): 1-7.

[16] 艾凡. 基于离散增强光纤的分布式传感关键技术与应用研究[D]. 武汉: 华中科技大学, 2019. 10.30919/esmm5f615

    AiF. Research on key technologies and applications of distributed sensing based on discrete reinforced fiber[D]. Wuhan: Huazhong University of Science and Technology, 2019.

[17] Du C, Fu C L, Li P F, et al. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure[J]. Journal of Lightwave Technology, 2023, 41(5): 1566-1570.

[18] Meng Y J, Fu C L, Du C, et al. Shape sensing using two outer cores of multicore fiber and optical frequency domain reflectometer[J]. Journal of Lightwave Technology, 2021, 39(20): 6624-6630.

[19] Du B, He J, Xu B J, et al. High-density weak in-fiber micro-cavity array for distributed high-temperature sensing with millimeter spatial resolution[J]. Journal of Lightwave Technology, 2022, 40(22): 7447-7455.

[20] Lindner E, Hartung A, Hoh D, et al. Trends and future of fiber Bragg grating sensing technologies: tailored draw tower gratings (DTGs)[J]. Proceedings of SPIE, 2014, 9141: 91410X.

[21] Guo H Y, Tang J G, Li X F, et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 2013, 11(3): 030602.

[22] Xu B J, He J, Du B, et al. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing[J]. Optics Express, 2021, 29(20): 32615-32626.

[23] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method[J]. Optics Letters, 2007, 32(22): 3227-3229.

[24] Fan X Y, Koshikiya Y, Ito F. Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR[J]. Optics Express, 2011, 19(20): 19122-19128.

[25] Ding Z Y, Yao X S, Liu T G, et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 2013, 21(3): 3826-3834.

[26] Wang B, Fan X Y, Wang S, et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 2017, 25(4): 3514-3524.

[27] Luo M M, Liu J F, Tang C J, et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express, 2019, 27(24): 35823-35829.

[28] Feng Y X, Xie W L, Meng Y X, et al. High-performance optical frequency-domain reflectometry based on high-order optical phase-locking-assisted chirp optimization[J]. Journal of Lightwave Technology, 2020, 38(22): 6227-6236.

[29] Yin G L, Jiang R, Zhu T. In-fiber auxiliary interferometer to compensate laser nonlinear tuning in simplified OFDR[J]. Journal of Lightwave Technology, 2022, 40(3): 837-843.

[30] Zhong H J, Fu C L, Li P F, et al. Distributed high-temperature sensing based on optical frequency domain reflectometry with a standard single-mode fiber[J]. Optics Letters, 2022, 47(4): 882-885.

[31] 渠帅. 基于OFDR分布式光纤传感系统的数据处理及性能提升研究[D]. 济南: 山东大学, 2022.

    QuS. Research on data processing and performance Improvement of distributed optical fiber sensing system based on OFDR[D]. Jinan: Shandong University, 2022.

[32] Zhao S Y, Cui J W, Suo L J, et al. Performance investigation of OFDR sensing system with a wide strain measurement range[J]. Journal of Lightwave Technology, 2019, 37(15): 3721-3727.

[33] Li W H, Chen L, Bao X Y. Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry[J]. Optics Communications, 2013, 311: 26-32.

[34] Chiuchiolo A, Palmieri L, Consales M, et al. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors[J]. Optics Letters, 2015, 40(19): 4424-4427.

[35] Xin G, Li Z Y, Fan W, et al. Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity[J]. Optics Express, 2017, 25(23): 28112-28122.

[36] Suo L J, Lei Z K, Zhao S Y, et al. Study on sliding-window length based on Rayleigh backscattering spectrum correlation in distributed optical-fiber strain measurement[J]. Optical Fiber Technology, 2019, 47: 126-132.

[37] Zhong H J, Fu C L, Wang L J, et al. High-spatial-resolution OFDR with single interferometer using self-compensation method[J]. Optics and Lasers in Engineering, 2023, 161: 107341.

[38] Song J, Li W H, Lu P, et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 2014, 6(3): 6801408.

[39] Zhao S Y, Cui J W, Wu Z J, et al. Accuracy improvement in OFDR-based distributed sensing system by image processing[J]. Optics and Lasers in Engineering, 2020, 124: 105824.

[40] Li P F, Fu C L, Zhong H J, et al. A nondestructive measurement method of optical fiber young’s modulus based on OFDR[J]. Sensors, 2022, 22(4): 1450.

[41] Duncan R G, Froggatt M E, Kreger S T, et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 2007, 6530: 487-497.

[42] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3): 2967-2973.

[43] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3): 2967-2973.

[44] Khan F, Denasi A, Barrera D, et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 2019, 19(14): 5878-5884.

[45] Barrera D, Madrigal J, Delepine-Lesoille S, et al. Multicore optical fiber shape sensors suitable for use under gamma radiation[J]. Optics Express, 2019, 27(20): 29026-29033.

[46] Khan F, Barrera D, Sales S, et al. Curvature, twist and pose measurements using fiber Bragg gratings in multi-core fiber: a comparative study between helical and straight core fibers[J]. Sensors and Actuators A: Physical, 2021, 317: 112442.

[47] Idrisov R, Floris I, Rothhardt M, et al. Characterization and calibration of shape sensors based on multicore optical fibre[J]. Optical Fiber Technology, 2021, 61: 102319.

[48] Xiao X Z, Xu B J, Xu X Z, et al. Femtosecond laser auto-positioning direct writing of a multicore fiber Bragg grating array for shape sensing[J]. Optics Letters, 2022, 47(4): 758-761.

付彩玲, 彭振威, 李朋飞, 孟彦杰, 钟华健, 杜超, 王义平. OFDR分布式光纤温度/应变/形状传感研究进展[J]. 激光与光电子学进展, 2023, 60(11): 1106007. Cailing Fu, Zhenwei Peng, Pengfei Li, Yanjie Meng, Huajian Zhong, Chao Du, Yiping Wang. Research on Distributed Fiber Temperature/Strain/Shape Sensing Based on OFDR[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106007.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!