大气与环境光学学报, 2021, 16 (4): 349, 网络出版: 2021-08-30  

基于多传感器融合技术的微型空气质量监测系统优化设计

Optimization Design of Miniature Air Quality Monitoring System Based on Multi-Sensor Fusion Technology
作者单位
1 合肥工业大学光电技术研究院, 特种显示技术国家工程实验室, 安徽 合肥 230009
2 中国科学院合肥物质科学研究院智能机械研究所, 中国科学院传感技术国家重点实验室, 安徽 合肥 230031
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
摘要
针对国家环境空气质量监测站 (NAAQMS) 由于体积大、成本高而不利于大面积广泛布点的问题, 研制了一种微型空气质量监测系统, 用于监测大气中 CO、NO2、O3、SO2、PM2.5 和 PM10 的浓度。该系统分别采用电化学气体传感器和光学粒子计数器来测量气体污染物和颗粒物浓度。考虑到传感器在测量污染物浓度时容易受到大气温湿度的影响, 基于多传感器融合技术通过温湿度补偿算法对测量结果进行了修正, 并与 NAAQMS 发布的数据进行了比较, 分析表明二者具有很强的相关性。与 NAAQMS 的数据相比, 本系统 10 天监测数据的相关系数优于 0.7; 通过算法校正后, 某些污染物 (如 PM2.5) 的相关系数甚至可以提高到 0.9。新设计的空气质量监测系统具有鲁棒性强、体积小的特点, 适用于环境空气污染物的长期大面积分布式网络监测。
Abstract
In view of the challenge that the National Ambient Air Quality Monitoring Station (NAAQMS) is not suitable for large area distribution due to its large volume and high cost, a miniature air quality monitoring system is developed to monitor the concentrations of CO, NO2, O3, SO2, PM2.5 and PM10 in atmosphere. Electrochemical gas sensors and optical particle counter are adopted to measure the concentration of air pollutants andparticles respectively in the system. Considering that the sensor is vulnerable to the influcence of temperature and humidity of atmosphere when measuring the concentration of pollutants, the measurement results are modified through the temperature and humidity compensation algorithm based on the multi-sensor fusion technology. Then the modified measurement results are compared with the data released by NAAQMS, and it is shown that there is a strong correlation between the two data. Compared with the data obtained from NAAQMS, the correlation coefficient for 10 days monitoring data obtained from the developled system is better than 0.7. After the algorithm correction, the correlation coefficient of some pollutants, such as PM2.5, can even be improved to 0.9. The air quality monitoring system is robust and small in size, which is suitable for long-term and large area distributed network monitoring of environmental air pollutants.
参考文献

[1] Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(2): 779-799.

[2] Xiao Z M, Zhang Y F, Hong S M, et al. Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China[J]. Aerosol and Air Quality Research, 2011, 11(7): 873-882.

[3] Health Effects Institute. State of Global Air 2019[R]. Boston, MA: Health Effects Institute, 2019.

[4] Wang Yuzhong. Design and Research of Outdoor Multi-parameter Ambient Air Quality Monitoring System[D]. Hefei: Hefei University of Technology, 2020.

[5] Wu A N. Proper management of standardization to promote the development of marine environment protection[J]. China Standardization, 2009(6): 6-15.

[6] Pui D Y H, Chen S C, Zuo Z L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13: 1-26.

[7] Wei Chunxuan, Huang He, Zhai Zhenfang, et al. Analysis of meteorological elements and forecast method of haze day in Hefei, China[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 419-430.

[8] Zhu Yu, Cao Yong, Zhang Fuhai, et al. Application of ultra low emission gas monitoring system based on technology of Fourier transform infrared spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(2): 129-135.

[9] Lu K, Qin Y, He G X, et al. The impact of haze weather on health: A view to future[J]. Biomedical and Environmental Sciences, 2013, 26(12): 945-946.

[10] Ning Aiming, Wen Junhao, Zheng Dezhi, et al. Advances in monitoring technologies and its comparison research for PM2.5[J]. Metrology & Measurement Technology, 2013, 33(4): 11-14.

[11] Cai Xiaoshu, Su Mingxu, Shen Jianqi, et al. Particle Size Measurement Technology and Application[M]. Beijing: Chemical Industry Press, 2010: 28-49.

[12] Crilley L R, Marvin S, Ryan P, et al. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring[J]. Atmospheric Measurement Techniques, 2018, 11(2): 709-720.

[13] Laulainen N S. Summary of conclusions and recommendations from a visibility science workshop[R]. Office of Scientific and Technical Information (OSTI), 1993.

[14] Liu Jianguo, An Zhentao, Zhang Qian. Research progress on novel electrochemical sensor[J]. Transducer and Microsystem Technologies, 2013, 32(7): 1-3.

[15] Mead M I, Popoola O A M, Stewart G B, et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks[J]. Atmospheric Environment, 2013, 70: 186-203.

[16] Xu Yu, Ling Liuyi, Xie Pinhua, et al. Research on temperature properties and compensation for SO2 electrochemical sensor[J]. Instrument Technique and Sensor, 2018, (4): 14-19.

[17] Popoola O A M, Stewart G B, Mead M I, et al. Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability[J]. Atmospheric Environment, 2016, 147: 330-343.

[18] Pang X B, Shaw M D, Lewis A C, et al. Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring[J]. Sensors and Actuators B: Chemical, 2017, 240: 829-837.

王玉钟, 王焕钦, 胡俊涛, 桂华侨. 基于多传感器融合技术的微型空气质量监测系统优化设计[J]. 大气与环境光学学报, 2021, 16(4): 349. WANG Yuzhong, WANG Huanqin, HU Juntao, GUI Huaqiao. Optimization Design of Miniature Air Quality Monitoring System Based on Multi-Sensor Fusion Technology[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 349.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!