激光技术, 2023, 47 (4): 558, 网络出版: 2023-12-11  

热作模具表面激光熔覆H13的数值模拟及实验研究

Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces
作者单位
新疆大学 机械工程学院,乌鲁木齐 830017
摘要
为了解决热作模具表面磨损并导致失效的问题,基于ANSYS APDL软件,采用数值模拟的方式在热作模具上施加高斯热源,并利用生死单元法将H13合金粉末进行熔覆。通过温度场和应力场对工艺参数进行优化选择,对优化后的工艺参数进行实验验证,并对涂层进行了性能检测。结果表明,所选参数范围内的模拟最优参数为激光功率1200 W,扫描速率12 mm/s,模拟结果与实际涂层的形貌和温度分布较为接近; 数值模拟中的热影响区以及结合区与实验制备的结果高度一致; 测量熔覆层的深度为0.13 mm,与模拟得到的深度为0 mm~0.2 mm相应证,进一步说明了模拟结果的可靠性; 熔覆层的硬度以及耐磨性得到极大的提升,分别是基体的3倍和28倍以上。此研究结果为强化和修复热作模具提供了参考。
Abstract
For the sake of solving the problem of surface wear and failure of the hot work die, based on ANSYS APDL software, a Gaussian heat source was applied to the hot work die by numerical simulation, and the H13 alloy powder was clad by the life and death element method. The process parameters were optimized and selected through the temperature field and stress field. The optimized process parameters were tested and verified, and the performance of the coating was tested. The results show that the optimal simulation parameters within the selected parameter range are the laser power of 1200 W and the scanning speed of 12 mm/s. The simulation results are close to the morphology and temperature distribution of the actual coating. The heat-affected zone in the numerical simulation and the combination of the results are highly consistent with the experimentally prepared results; the measured depth of the cladding layer is 0.13 mm, which corresponds to the simulated depth of 0 mm~0.2 mm, which further illustrates the reliability of the simulation results; the hardness and wear resistance of the cladding layer have been greatly improved, which are 3 times and 28 times more than that of the matrix, respectively. The results of this study provide a reference for strengthening and repairing hot work molds.
参考文献

[1] LI J H, AN X J, YAO F P, et al. Simulation on thermal stress cycle in laser cladding of H13 steel Ni-based coating[J]. Chinese Journal of Lasers,2021,48(10):1002104(in Chinese).

[2] LI Sh H, HE W Ch, ZHANG X, et al. Research progress on surface treatment technolo-gies of H13 hot work die steel[J]. Iron & Steel,2021,56(3):13-22(in Chinese).

[3] CAO J, LU H F, LU J Zh, et al. Effects of tungsten carbide particles on microstructure and wear resistance of hot-working laser cladding[J]. Chinese Journal of Lasers, 2019,46(7):0702001 (in Chinese).

[4] MENG C, CAO R, LI J, et al. Mechanical properties of TiC-reinforced H13 steel by bionic laser treatment[J]. Optics & Laser Technology, 2021, 136: 106815.

[5] LI H B, GAO Q Q, LI K Y, et al. Properties of surface laser cladding H13/NiCr-Cr3C2 composite powder cladding[J]. Chinese Journal of Lasers, 2021,48(18):1802017(in Chinese).

[6] LIU L J, FENG M K, WANG X L, et al. Microstructure analysis of laser cladding strength-ening layer on H13 die steel surface assisted by ultrasonic[J]. Transactions of the China Welding Institution, 2021,42(6):85-90(in Chinese).

[7] XUE K N, LU H F, LUO K Y, et al. Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J]. Surface and Coatings Technology, 2020, 402: 126488.

[8] CHEN Z H, SUN W L, HUANG Y, et al. Study on microstructure and properties of laser cladding coating for base superalloy[J]. Laser Technology, 2021,45(4):441-447(in Chinese).

[9] LU J Z, CAO J, LU H F, et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface and Coatings Technology, 2019, 369: 228-237.

[10] HU Y M, CHEN W, CAO Y Sh, et al. Research progress of laser cladding technology in die wear control[J]. Hot Working Technology, 2021,50(2):10-12(in Chinese).

[11] HUANG H B, SUN W L. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021,45(6):788-793(in Chinese).

[12] YANG Z, HAO H, GAO Q, et al. Strengthening mechanism and high-temperature properties of H13+ WC/Y2O3 laser-cladding coatings[J]. Surface and Coatings Technology, 2021, 405: 126544.

[13] LU J Z, XUE K N, LU H F, et al. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J]. Journal of Materials Processing Technology, 2021, 296: 117202.

[14] LIZZUL L, SORGATO M, BERTOLINI R, et al. On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 361-370.

[15] CHAI Q, WANG Z, FANG C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J]. Surface and Coatings Technology, 2021, 422: 127494.

[16] LIU Y, XU T, ZHANG D, et al. Numerical simulation and microstructure formation mechanism of Ni-based coating fabricated by laser on copper plate[J]. Optik, 2022, 254: 168645.

[17] WANG Ch Y, ZHOU J Zh, ZHANG T, et al. Numerical simulation and solidification characteristics for laser cladding of Inconel 718[J]. Optics & Laser Technology, 2022, 149: 107843.

[18] GAO J, WU C, HAO Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287.

[19] ZHANG Q, XU P, ZHA G, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242: 167079.

[20] CUI Ch, WU M P, HE R, et al. Understanding Stellite-6 coating prepared by laser clad-ding: Convection and columnar-to-equiaxed transition[J]. Optics & Laser Technology, 2022, 149: 107885.

[21] GAO W, ZHAO S, WANG Y, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat and Mass Transfer, 2016, 92: 83-90.

陆靖, 孙文磊, 陈子豪, 邢学峰, 杨凯欣, 周浩南, 刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究[J]. 激光技术, 2023, 47(4): 558. LU Jing, SUN Wenlei, CHEN Zihao, XING Xuefeng, YANG Kaixin, ZHOU Haonan, LIU Deming. Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces[J]. Laser Technology, 2023, 47(4): 558.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!