光学 精密工程, 2020, 28 (8): 1700, 网络出版: 2020-11-02   

磁流体包覆无芯-三芯-无芯光纤结构的磁场传感器

Magnetic field sensor based on magnetic fluid coated no-core-three-core-no-core fiber structure
作者单位
1 重庆理工大学 理学院, 重庆 400054
2 绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
摘要
本文提出了一种磁流体包覆的无芯-三芯-无芯光纤结构的磁场传感器。将两段2 mm的无芯光纤熔接在50 mm的三芯光纤两端, 并将此结构插入70 mm长的毛细管中, 通过向毛细管里注射磁流体, 使无芯-三芯-无芯这一结构浸没在磁流体里。无芯光纤用来激发三芯光纤的包层模, 并实现模间干涉。通过测量透射谱波谷波长的漂移或探测透射谱波谷的强度损耗可以实现对磁场强度的检测。实验结果表明: 该传感器在磁场强度为8~16 mT内, 透射谱的特征波长漂移随之线性变化, 在1 606 nm附近的波长漂移灵敏度为68.57 pm/mT; 该波长附近的透射谱强度损耗变化在相同的磁场强度范围内呈现良好的线性度, 对应的强度灵敏度为0.828 7 dB/mT。该传感结构制作简易, 灵敏度高, 成本低廉, 在磁场传感领域中有一定应用价值。
Abstract
In this work, a magnetic field sensor based on a no-core-three-core-no-core fiber structure was proposed and fabricated. Two segments of 2-mm no-core fiber were spliced at both ends of a 50-mm three-core fiber, and the structure was inserted into a 70-mm-long capillary tube; in addition, magnetic fluid was injected into the capillary tube using a needle, such that the no-core-three-core-no-core structure was completely immersed in the magnetic fluid. The no-core fiber was used to excite the cladding mode of the three-core fiber and achieve inter-mode interference. The magnetic field intensity can be determined by measuring the wavelength shift of the transmission spectral dip or by detecting the intensity loss of the transmission spectral dip. The experiment shows that the wavelength shift of the interference spectrum near 1 606 nm has a linear relationship with the change in intensity of the magnetic field, with a corresponding wavelength shift sensitivity of 68.57 pm/mT when the magnetic field intensity is within the range of 8-16 mT. Within the same range of magnetic field intensity, the intensity loss of the interference spectrum near this wavelength shows good linearity, and the corresponding intensity sensitivity is 0.828 7 dB/mT. The proposed sensor structure has the advantages of a simple structure, high sensitivity, and low cost, with potential application in magnetic field detection.
参考文献

[1] LENZ J E. A review of magnetic sensors[J]. Proceedings of the IEEE, 1990, 78(6): 973-989.

[2] HONG C Y, HORNG H, YANG S. Tunable refractive index of magnetic fluids and its applications[J]. Physica Status Solidi (c), 2004, 1(7): 1604-1609.

[3] LUO L F, PU S L, TANG J L, et al.. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid[J]. Applied Physics Letters, 2015, 106(19): 193507.

[4] CHILDS P, CANDIANI A, PISSADAKIS S. Optical fiber cladding ring magnetic field sensor[J]. IEEE Photonics Technology Letters, 2011, 23(13): 929-931.

[5] KONSTANTAKI M, CANDIANI A, PISSADAKIS S. Optical fibre long period grating spectral actuators utilizing ferrofluids as outclading overlayers[J]. Journal of the European Optical Society: Rapid Publications, 2011, 6: 11007.

[6] DENG M, SUN X K, HAN M, et al.. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid[J]. Applied Optics, 2013, 52(4): 734-741.

[7] WU J, MIAO Y P, LIN W, et al.. Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid[J]. IEEE Photonics Technology Letters, 2014, 26(15): 1581-1584.

[8] WU J X, MIAO Y P, SONG B B, et al.. Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid[J]. Applied Physics Letters, 2014, 104(25): 252402.

[9] CHEN H, SHAO Z H, ZHANG X, et al.. Highly sensitive magnetic field sensor using tapered Mach-Zehnder interferometer[J]. Optics and Lasers in Engineering, 2018, 107: 78-82.

[10] Temperature self-compensative all-fiber magnetic field sensing structure based on no-core fiber cascaded with fiber Bragg gratings[J]. Optics and Lasers in Engineering, 2019, 119: 26-29.

[11] 胡涛, 赵勇, 吕志伟, 等. 光纤磁流体 F-P 电磁场传感器[J]. 光学 精密工程, 2009, 17(10): 2445-2449.

    HU T, ZHAO Y, L ZH W, et al.. Fiber optic F-P electromagnetic field sensor based on magnetic fluid[J]. Opt. Precision Eng., 2009, 17(10): 2445-2449. (in Chinese)

[12] 沈涛, 孙滨超, 冯月. 马赫-曾德尔干涉集成化的全光纤磁场与温度传感器[J]. 光学 精密工程, 2018, 26(6): 1338-1345.

    SHEN T, SUN B CH, FENG Y, et al.. Mach-Zehneder interference all-fiber sensor for measurement of magnetic field and temperature[J]. Opt. Precision Eng., 2018, 26(6): 1338-1345.(in Chinese)

[13] 杨淑连, 何建廷, 魏芹芹, 等. 强度调制的光纤布拉格光栅磁场传感器[J]. 光学 精密工程, 2014, 22(3): 597-601.

    YANG SH L, HE J T, WEI Q Q, et al.. Intensity-modulated magnetic field sensor based on optical fiber Bragg grating[J]. Opt. Precision Eng., 2014, 22(3): 597-601. (in Chinese)

[14] YANG S Y, CHIEH J J, HORNG H E, et al.. Origin and applications of magnetically tunable refractive index of magnetic fluid films[J]. Applied Physics Letters, 2004, 84(25): 5204-5206.

[15] YANG S, CHIU Y P, JEANG B Y, et al.. Origin of field-dependent optical transmission of magnetic fluid films[J]. Applied Physics Letters, 2001, 79(15): 2372-2374.

[16] 赵月, 曹晔, 童峥嵘, 等. 可双参量同时测量的光纤磁场传感器[J]. 光子学报, 2016, 45(12): 1206004-1206008.

    ZHAO Y, CAO Y, TONG ZH R, et al.. Simultaneous measurement of dual-parameter based optical fiber magnetic field sensor[J]. Acta Photonica Sinica, 2016,45(12): 1206004-1206008. (in Chinese)

[17] 赵勇,董俊良,陈菁菁,等. 磁流体的光学特性及其在光电信息传感领域中的应用 [J].光电工程, 2009, 36(7): 125-130.

    ZHAO Y, DONG J L, CHEN J J, et al.. The optical characteristics of magnetic fluid and their applications in the field of photoelectric information sensing[J]. Opto-Electronic Engineering, 2009, 36(7): 125-130. (in Chinese)

[18] 彭志清, 廖杰, 李玉洁, 等. 改性石墨烯包覆光纤的马赫-曾德大肠杆菌传感器[J]. 光学 精密工程, 2020, 28(2): 296-302.

    PENG ZH Q, LIAO J, LI Y J, et al.. Escherichia coli fiber sensor based on the modified graphene coated fiber Mach-Zehnder interference[J]. Opt. Precision Eng., 2020, 28(2): 296-302.(in Chinese)

[19] 单聪淼, 孙华燕, 赵延仲, 等. 基于M-Z干涉光路的光学目标探测[J]. 光学 精密工程, 2018, 26(4): 807-815.

    SHAN C M, SUN H Y, ZHAO Y ZH, et al.. Optical target recognition based on optical path of Mach-Zehnder interferometric[J]. Opt. Precision Eng., 2018, 26(4): 807-815.(in Chinese)

[20] MIAO Y P, WU J X, LIN W, et al.. Magnetic field tunability of optical microfiber taper integrated with ferrofluid[J]. Optics Express, 2013, 21(24): 29914-29920.

[21] 卜胜利, 汤佳莉, 刘志恒, 等. 磁流体包覆的无芯-单模-无芯光纤结构的磁场传感特性[J]. 光子学报, 2015, 44(12): 1206002-1206008.

    PU SH L, TANG J L, LIU ZH H, et al.. Magnetic field sensing based on magnetic-fluid-clad no-core single-mode no-core fiber structure[J]. Acta Photonica Sinica, 2015, 44(12): 1206004-1206008. (in Chinese)

[22] HONG C, HORNG H, KUO F, et al.. Evidence of multiple states of ordered structures and a phase transition in magnetic fluid films under perpendicular magnetic fields[J]. Applied Physics Letters, 1999, 75(15): 2196-2198.

[23] KELLNER R R, KOHLER W. Short-time aggregation dynamics of reversible light-induced cluster formation in ferrofluids[J]. Journal of Applied Physics, 2005, 97(3): 034910.

[24] PU S L, CHEN X F, CHEN Y P, et al.. Fiber-optic evanescent field modulator using a magnetic fluid as the cladding[J]. Journal of Applied Physics, 2006, 99(9): 093516.

[25] DONG S H, PU S L, WANG H T. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing[J]. Optics Express, 2014, 22(16): 19108-19116.

[26] LIN W, MIAO Y P, ZHANG H, et al.. Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects[J]. Applied Physics Letters, 2013, 103(15): 151101.

[27] CHEN Y F, HAN Q, LIU T G, et al.. Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid[J]. Optics Letters, 2013, 38(20): 3999-4001.

陶宇, 牛思瑶, 冯文林. 磁流体包覆无芯-三芯-无芯光纤结构的磁场传感器[J]. 光学 精密工程, 2020, 28(8): 1700. TAO Yu, NIU Si-yao, FENG Wen-lin. Magnetic field sensor based on magnetic fluid coated no-core-three-core-no-core fiber structure[J]. Optics and Precision Engineering, 2020, 28(8): 1700.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!