硅酸盐学报, 2023, 51 (12): 3077, 网络出版: 2024-01-19  

利用高频交流电提高闪烧均匀性:趋肤效应的作用

Enhancing Uniformity in Flash Sintering Through High-Frequency Alternating Current - Role of Skin Effect
作者单位
1 上海交通大学机械与动力工程学院,上海 200240
2 清华大学材料学院,新型陶瓷与精细工艺国家重点实验室,北京 100084
3 上海交通大学材料科学与工程学院,上海市先进高温材料及其精密成形重点实验室,上海200240
4 上海交通大学材料科学与工程学院,上海市先进高温材料及其精密成形重点实验室,上海200240
摘要
闪烧技术自发现以来已经被广泛研究了10多年,但其实际应用却极少被讨论,闪烧应用的主要挑战是烧结大尺寸样品时的困难。在典型直流电闪烧中,电流主要集中在样品的中心,样品内部和表面之间存在显著的温度梯度,导致最终样品的微观结构不均匀,甚至样品中的内应力会致使样品开裂。本工作利用不同频率的交流电来研究频率对闪烧中这种不均匀性问题的影响。结果表明,增加频率显著提高了样品的均匀性,其原因主要是由于交流电闪烧中存在显著的“趋肤效应”,即电流密度集中在样品的表面而不是样品中心,这补偿了表面较高的辐射热损失,从而导致更均匀的样品温度。本工作提供了一种潜在的方法,可以显著提高闪烧在工业领域的实际应用。
Abstract
Flash sintering is extensively investigated for over a decade since its discovery, but its practical application is seldomly discussed. A primary challenge in utilizing flash sintering is a difficulty in sintering large samples. This is since in a typical direct current (DC) flash sintering, the current is concentrated primarily in the center of the sample, causing a significant temperature gradient between the interior and surface of the sample, thus leading to an inhomogeneous microstructure in the final product and sometimes large stresses in the sample that breaks the material. In this paper, we utilized the alternating current (AC) with varying frequencies to investigate its effect on this inhomogeneity issue in flash sintering. The results indicate that increasing the frequency significantly enhances the uniformity of the sample. The underlying mechanism is related to a significant “skin effect” in AC flash sintering, where the current density is concentrated on the surface of the sample rather than its center, compensating for a higher radiation heat loss at the surface and resulting in a more uniform sample temperature. This work provides a potential approach to enhance the flash sintering for industrial applications.
参考文献

[1] COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. J Am Ceram Soc, 2010, 93(11): 3556-3559.

[2] XIAO W W, NI N, CHENG W L, et al. Reduced interfacial stresses in laminated ceramics during flash sintering enabled by an extremely low uniaxial viscosity[J]. Acta Mater, 2023, 246: 118688.

[3] XIAO W W, NI N, FAN X H, et al. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide[J]. J Mater Sci Technol, 2021, 60: 70-76.

[4] NI N, XIAO W W, ZHENG C L, et al. Flash cosintering of a lanthanum strontium cobalt ferrite nanofibre/Gd-doped ceria bilayer structure[J]. J Eur Ceram Soc, 2022, 42(6): 2870-2878.

[5] MASUDA H, MORITA K, TOKUNAGA T, et al. Anelasticity induced by AC flash processing of cubic zirconia[J]. Acta Mater, 2022, 227: 117704.

[6] GHOSH S, CHOKSHI A H, LEE P, et al. A huge effect of weak dc electrical fields on grain growth in zirconia[J]. J Am Ceram Soc, 2009, 92(8): 1856-1859.

[7] DOWNS J A, SGLAVO V M. Electric field assisted sintering of cubic Zirconia at 390 ℃[J]. J Am Ceram Soc, 2013, 96(5): 1342-1344.

[8] MCWILLIAMS B, YU J, KELLOGG F. Sintering aluminum alloy powder using direct current electric fields at room temperature in seconds[J]. J Mater Sci, 2018, 53(12): 9297-9304.

[9] ALVAREZ A, DONG Yanhao, CHEN I W. DC electrical degradation of YSZ: Voltage-controlled electrical metallization of a fast ion conducting insulator[J]. J Am Ceram Soc, 2020, 103(5): 3178-3193.

[10] YOSHIDA M, FALCO S, TODD R I. Measurement and modelling of electrical resistivity by four-terminal method during flash sintering of 3YSZ[J]. J Ceram Soc Japan, 2018, 126(7): 579-590.

[11] LAVAGNINI I R, CAMPOS J V, JESUS L M, et al. Influence of forming methods on the microstructure of 3YSZ flash-sintered ceramics[J]. Materialia, 2022, 22: 101419.

[12] BERNARDO M S, JARDIEL T, CABALLERO A C, et al. Electric current activated sintering (ECAS) of undoped and titanium-doped BiFeO3 bulk ceramics with homogeneous microstructure[J]. J Eur Ceram Soc, 2019, 39(6): 2042-2049.

[13] MISHRA T P, LENSER C, RAJ R, et al. Development of a processing map for safe flash sintering of gadolinium-doped ceria[J]. J Am Ceram Soc, 2021, 104(9): 4316-4328.

[14] CARVALHO S, MUCCILLO E, MUCCILLO R. Electrical Behavior and microstructural features of electric field-assisted and conventionally sintered 3 Mol% yttria-stabilized zirconia[J]. Ceramics, 2018, 1(1): 3-12.

[15] RAJ R. Joule heating during flash-sintering[J]. J Eur Ceram Soc, 2012, 32(10): 2293-2301.

[16] FRANCIS J S C, RAJ R. Influence of the field and the current limit on flash sintering at isothermal furnace temperatures[J]. J Am Ceram Soc, 2013, 96(9): 2754-2758.

[17] DONG Y H, CHEN I W, LI J. Transverse and longitudinal degradations in ceramic solid electrolytes[J]. Chem Mater, 2022, 34(13): 5749-5765.

[18] QIN W, YUN J, THRON A M, et al. Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria- stabilized zirconia[J]. Mater Manuf Process, 2017, 32(5): 549-556.

[19] CHUNG D D L. Pitfalls in electromagnetic skin-depth determination[J]. J Electron Mater, 2022, 51(5): 1893-1899.

肖巍伟, 余亚丽, 赵晓峰, 倪娜. 利用高频交流电提高闪烧均匀性:趋肤效应的作用[J]. 硅酸盐学报, 2023, 51(12): 3077. XIAO Weiwei, YU Yali, ZHAO Xiaofeng, NI Na. Enhancing Uniformity in Flash Sintering Through High-Frequency Alternating Current - Role of Skin Effect[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3077.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!