中国激光, 2023, 50 (9): 0907201, 网络出版: 2023-03-28   

定量仿真研究贵金属纳米探针聚集诱导的非线性增强光热效应

Quantitative Simulation of Nonlinear Enhanced Photothermal Effect Induced by Aggregation of Noble-Metal Nanoprobe
张奇睿 1,2石玉娇 1,2,*
作者单位
1 华南师范大学生物光子学研究院,激光生命科学教育部重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院,广东省激光生命科学重点实验室,广东 广州 510631
引用该论文

张奇睿, 石玉娇. 定量仿真研究贵金属纳米探针聚集诱导的非线性增强光热效应[J]. 中国激光, 2023, 50(9): 0907201.

Qirui Zhang, Yujiao Shi. Quantitative Simulation of Nonlinear Enhanced Photothermal Effect Induced by Aggregation of Noble-Metal Nanoprobe[J]. Chinese Journal of Lasers, 2023, 50(9): 0907201.

参考文献

[1] Chen Q, Wang C, Zhan Z X, et al. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy[J]. Biomaterials, 2014, 35(28): 8206-8214.

[2] Li W T, Sun X L, Wang Y, et al. In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs[J]. Biomedical Optics Express, 2014, 5(8): 2679-2685.

[3] Peng Y, Liu Y, Lu X L, et al. Ag-hybridized plasmonic Au-triangular nanoplates: highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy[J]. Journal of Materials Chemistry B, 2018, 6(18): 2813-2820.

[4] Xu J W, Cheng X J, Chen F X, et al. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy[J]. Journal of Materials Science & Technology, 2021, 63: 97-105.

[5] Li Y, Liu G H, Ma J Y, et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy[J]. Journal of Controlled Release, 2017, 258: 95-107.

[6] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2): 95-103.

[7] Ng S M, Koneswaran M, Narayanaswamy R. A review on fluorescent inorganic nanoparticles for optical sensing applications[J]. RSC Advances, 2016, 6(26): 21624-21661.

[8] Wang S S, Chen R H, Yu Q, et al. Near-infrared plasmon-boosted heat/oxygen enrichment for reversing rheumatoid arthritis with metal/semiconductor composites[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 45796-45806.

[9] 徐娅, 边捷, 张伟华. 局域表面等离激元纳米光学传感器的原理与进展[J]. 激光与光电子学进展, 2019, 56(20): 202407.

    Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors[J]. Laser&Optoelectronics Progress, 2019, 56(20): 202407.

[10] 陈泓先, 孙宁, 张洁. 泡沫镍耦合金纳米结构增强拉曼散射[J]. 光学学报, 2022, 42(5): 0524001.

    Chen H X, Sun N, Zhang J. Nickel foam coupled gold nanostructures enhanced Raman scattering[J]. Acta Optica Sinica, 2022, 42(5): 0524001.

[11] 黄向民, 施慧, 赵航, 等. 基于光热效应的纳米塑料捕获和SERS检测[J]. 光学学报, 2022, 42(16): 1624001.

    Huang X M, Shi H, Zhao H, et al. Capture and SERS detection of nano plastics based on photothermal effect[J]. Acta Optica Sinica, 2022, 42(16): 1624001.

[12] Yang X, Yang M X, Pang B, et al. Gold nanomaterials at work in biomedicine[J]. Chemical Reviews, 2015, 115(19): 10410-10488.

[13] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706.

[14] Fan J A, Wu C, Bao K, et al. Self-assembled plasmonic nanoparticle clusters[J]. Science, 2010, 328(5982): 1135-1138.

[15] Zheng M B, Yue C X, Ma Y F, et al. Single-step assembly of DOX/ICG loaded lipid: polymer nanoparticles for highly effective chemo-photothermal combination therapy[J]. ACS Nano, 2013, 7(3): 2056-2067.

[16] Rechberger W, Hohenau A, Leitner A, et al. Optical properties of two interacting gold nanoparticles[J]. Optics Communications, 2003, 220(1/2/3): 137-141.

[17] Huang P, Lin J, Li W W, et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy[J]. Angewandte Chemie (International Ed. in English), 2013, 52(52): 13958-13964.

[18] Dey P, Tabish T A, Mosca S, et al. Plasmonic nanoassemblies: tentacles beat satellites for boosting broadband NIR plasmon coupling providing a novel candidate for SERS and photothermal therapy[J]. Small, 2020, 16(10): 1906780.

[19] Liu Y P, Zhang X W, Luo L Y, et al. Gold-nanobranched-shell based drug vehicles with ultrahigh photothermal efficiency for chemo-photothermal therapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, 18: 303-314.

[20] Li X M, Yu L C, Zhang C N, et al. Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy[J]. Bioactive Materials, 2022, 7: 377-388.

[21] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499.

[22] Gunnarsson L, Rindzevicius T, Prikulis J, et al. Confined plasmons in nanofabricated single silver particle pairs:   experimental observations of strong interparticle interactions[J]. The Journal of Physical Chemistry B, 2005, 109(3): 1079-1087.

张奇睿, 石玉娇. 定量仿真研究贵金属纳米探针聚集诱导的非线性增强光热效应[J]. 中国激光, 2023, 50(9): 0907201. Qirui Zhang, Yujiao Shi. Quantitative Simulation of Nonlinear Enhanced Photothermal Effect Induced by Aggregation of Noble-Metal Nanoprobe[J]. Chinese Journal of Lasers, 2023, 50(9): 0907201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!