中国激光, 2023, 50 (9): 0907201, 网络出版: 2023-03-28   

定量仿真研究贵金属纳米探针聚集诱导的非线性增强光热效应

Quantitative Simulation of Nonlinear Enhanced Photothermal Effect Induced by Aggregation of Noble-Metal Nanoprobe
张奇睿 1,2石玉娇 1,2,*
作者单位
1 华南师范大学生物光子学研究院,激光生命科学教育部重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院,广东省激光生命科学重点实验室,广东 广州 510631
图 & 表

图 1. 光热转换仿真。(a)~(c)孤立金纳米球、正三角形金纳米球三聚体和密排六边形金纳米球七聚体探针的局域表面等离子体共振电场增强;(d)不同耦合纳米结构纳米探针的光热功率谱仿真结果;(e)不同耦合纳米结构纳米探针中每个金纳米球的最大热功率

Fig. 1. Simulation of photothermal conversion. (a)-(c) Localized surface plasmon resonance induced electric field enhancement of nanoprobe with single gold nanosphere, equilateral trangular gold nanosphere trimer, and densely packed hexagonal gold nanosphere heptamer, respectively; (d) simulated optical heat power of nanoprobe with different coupling nanostructures; (e) simulated maximum optical heat power per nanosphere in nanoprobe with different coupling nanostructures

下载图片 查看原文

图 2. 热扩散仿真。(a)~(c)孤立金纳米球、正三角形金纳米球三聚体和密排六边形金纳米球七聚体探针经电场强度为4×105 V/m的激光照射10 ns后的定量仿真温度场;(d)虚线处的温度分布;(e)不同耦合纳米结构纳米探针经激光照射10 ns后的最高温度

Fig. 2. Simulation of thermal diffusion. (a)-(c) Simulated quantitative temperature fields of nanoprobe with single gold nanosphere, equilateral trangular gold nanosphere trimer, and densely packed hexagonal gold nanosphere heptamer after irradiation for 10 ns by laser with electric field intensity of 4×105 V/m; (d) temperature distribution along the dotted lines in figures (a)-(c); (e) maximum temperature of nanoprobes with different coupling nanostructures after irradiation for 10 ns by laser

下载图片 查看原文

图 3. 纳米球间隙d对纳米探针性能的影响。(a)~(c)纳米球间隙分别为2、1、0.5 nm的密排六边形金纳米球七聚体探针的局域表面等离子体共振电场增强;(d)不同纳米球间隙的密排六边形金纳米球七聚体探针的光热功率谱仿真结果;(e)~(g)不同纳米球间隙的密排六边形金纳米球七聚体探针经电场强度为4×105 V/m的激光照射10 ns后的定量仿真温度场;(h)虚线处的温度分布

Fig. 3. Influence of nanosphere-nannosphere gap (d) on nanoprobe performance. (a)-(c) Localized surface plasmon resonance induced electric field enhancement of gold nanosphere heptamer probe with nanosphere-nanosphere gap distance of 2, 1, and 0.5 nm; (d) simulated optical heat power of gold nanosphere heptamer probe with different gaps; (e)-(g) simulated quantitative temperature fields of gold nanosphere heptamer probe with different gaps after irradiation for 10 ns by a laser with electric field intensity of 4×105 V/m; (h) temperature distribution along the dotted lines in figures (e)-(g)

下载图片 查看原文

图 4. 单球直径对纳米探针性能的影响。(a)~(c)单球直径分别为15、30、60 nm的金纳米球七聚体探针的局域表面等离子体共振电场增强;(d)~(f)不同单球直径的金纳米球七聚体探针经电场强度为4×105 V/m的激光照射10 ns后的定量仿真温度场;(g)不同单球直径的金纳米球七聚体探针的单位体积光热功率谱仿真结果;(h)虚线处的温度分布

Fig. 4. Influence of single-sphere diameter on nanoprobe performance. (a)-(c) Localized surface plasmon resonance induced electric field enhancement of gold nanosphere heptamer probe with single-sphere diameter of 15, 30, and 60 nm; (d)-(f) simulated quantitative temperature fields of gold nanosphere heptamer probe with different single-diameter after irradiation for 10 ns by a laser with electric field intensity of 4×105 V/m; (g) simulated optical heat power per volume of gold nanosphere heptamer probe with different single-sphere diameters; (h) temperature distribution along the dotted lines in figures (d)-(f)

下载图片 查看原文

图 5. 颗粒形状对纳米探针性能的影响。(a)~(c)颗粒形状分别为球形、六棱柱、立方体的金纳米七聚体探针的局域表面等离子体共振电场增强;(d)~(f)不同形状颗粒构成的金纳米七聚体探针经电场强度为4×105 V/m的激光照射10 ns后的定量仿真温度场;(g)不同形状颗粒构成的金纳米七聚体探针的单位体积光热功率谱仿真结果;(h)虚线处的温度分布

Fig. 5. Influence of particle shape on nanoprobe performance. (a)-(c) Localized surface plasmon resonance induced electric field enhancement of gold nano heptamers probe with spherical, hexagonal prismatic and cube particles; (d)-(f) simulated quantitative temperature fields of gold nano heptamers probe with different shapes of particles after irradiation for 10 s by a laser with electric field intensity of 4×105 V/m; (g) simulated optical heat power per volume of gold nano heptamers probe with different shapes of particles; (h) temperature distribution along the dotted lines in figures (d)-(f)

下载图片 查看原文

图 6. 排列方式对纳米探针性能的影响。(a)~(c)纳米颗粒以密排六边形七聚体、环形和长链组成的纳米探针的局域表面等离子体共振电场增强;(d)不同排列方式下纳米探针的光热功率谱仿真结果;(e)~(g)不同排列方式下纳米探针经电场强度为4×105 V/m的激光照射10 ns后的定量仿真温度场;(h)虚线处的温度分布

Fig. 6. Influence of permutation mode on nanoprobe performance. (a)-(c) Localized surface plasmon resonance induced electric field enhancement of nanoprobe constituted by nanoparticles with densely packed hexagonal heptamer, ring shape, and long chain; (d) simulated optical heat power of nanoprobe with different permutation modes; (e)-(g) simulated quantitative temperature fields of gold nanoprobe with different permutation modes after irradiation for 10 ns by a laser with electric field intensity of 4×105 V/m; (h) temperature distribution along the dotted lines in figures (e)-(g)

下载图片 查看原文

图 7. 铂纳米球的聚集增强。(a)铂纳米球的电场分布;(b)铂纳米球聚集为七聚体后的电场耦合增强;(c)铂纳米球聚集为七聚体前后每个纳米球的光热功率谱仿真结果;(d)金纳米球与铂纳米球聚集为七聚体后每个纳米球光热功率提升百分比

Fig. 7. Aggregation enhancement of platinum nanospheres. (a) Electric field distribution of platinum nanosphere; (b) electric field enhancement for platinum nanospheres after aggregation into heptamer; (c) simulated optical heat power per platinum nanospheres before and after aggregation into heptamer; (d) percentage increase of optical heat power per gold or platinum nanosphere after aggregation into heptamer

下载图片 查看原文

张奇睿, 石玉娇. 定量仿真研究贵金属纳米探针聚集诱导的非线性增强光热效应[J]. 中国激光, 2023, 50(9): 0907201. Qirui Zhang, Yujiao Shi. Quantitative Simulation of Nonlinear Enhanced Photothermal Effect Induced by Aggregation of Noble-Metal Nanoprobe[J]. Chinese Journal of Lasers, 2023, 50(9): 0907201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!