激光技术, 2023, 47 (6): 729, 网络出版: 2023-12-05  

基于DPMZM的微波光子倍频激光雷达仿真分析

Simulation and analysis of LiDAR based on DPMZM and microwave photonic frequency multiplication
作者单位
1 西南技术物理研究所,成都 610041
2 四川大学 电子信息学院,成都 610065
摘要
为了提升调频连续波激光雷达调制带宽、从而提高距离分辨率,采用基于双平行Mach-Zehnder调制器的外调制方式,结合无光滤波器的微波光子倍频技术,通过1 GHz的射频源实现8 GHz的宽带射频调制信号,并利用搭建的模型研究了微波光子倍频子系统中消光比、调制系数和移相器相位偏移3个参数的变化对调频连续波激光雷达系统性能的影响。结果表明,大部分商用调制器的消光比可以满足使用需求,调制系数在2.385~2.425范围内或电移相器误差不大于1.3°时,该激光雷达探测信号峰的功率抑制比可以保持在20 dB以上。此研究结果为微波光子倍频技术在调频连续波激光雷达中的应用提供了理论支持,对工程实现有一定的参考意义。
Abstract
In order to increase the modulation bandwidth of frequency-modulated continuous wave (FMCW) light detection and ranging (LiDAR) for the high range resolution, with the use of external modulation mode based on dual-parallel Mach-Zehnder modulator (DPMZM), combined with the microwave photonic frequency multiplication technology where no optical filters were used, the broadband radio frequency(RF) modulated signal of 8 GHz was realized from a 1 GHz RF source. Furthermore, the effect of the variation of three parameters in the subsystem, namely extinction ratio, modulation index, and phase shift of phase shifter, on the performance of the built FMCW LiDAR system model was investigated. The results show that the extinction ratio of most commercial modulators can meet the requirements of use. When the modulation index is in the range of 2.385~2.425 or the electrical phase shifter error is not greater than 1.3°, the suppressed ratio of FMCW LiDAR detection signal peak power can be maintained above 20 dB. These researches provide theoretical support for the application of microwave photonic frequency multiplication technique in FMCW LiDAR and have certain reference significance for engineering implementation.
参考文献

[1] LI Ch L, LIU J Ch, ZHANG F M, et al. Review of nonlinearity co-rrection of frequency modulated continuous wave LiDAR measurement technology[J]. Opto-Electron Engineering, 2022, 49(7): 210438(in Chinese).

[2] BEHROOZPOUR B, SANDBORN P A M, WU M C, et al. LiDAR system architectures and circuits[J]. IEEE Communications Magazine, 2017, 55(10): 135-142.

[3] ROYO S, BALLESTA-GARCIA M. An overview of LiDAR imaging systems for autonomous vehicles[J]. Applied Sciences, 2019, 9(19): 4093.

[4] SCHWARZ B. LiDAR: Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7):429-430.

[5] MITCHELL E W, HOEHLER M S, GIORGETTA F R, et al. Cohe-rent laser ranging for precision imaging through flames[J]. Optica, 2018, 5(8):988-995.

[6] DILAZARO T, NEHMETALLAH G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs[J]. Optics Express, 2018, 26(3): 2891-2904.

[7] POULTON C V, YAACOBI A, COLE D B, et al. Coherent solid-state LiDAR with silicon photonic optical phased arrays[J]. Optics Letters, 2017, 42(20):4091-4094.

[8] LI G Z, WANG R, SONG Z Q, et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging[J]. A-pplied Optics, 2017, 56: 3257-3262.

[9] GAO S, HUI R. Frequency-modulated continuous-wave LiDAR using I/Q modulator for simplified heterodyne detection[J]. Optics Letters, 2012, 37(11):2022-2024.

[10] XU Zh Y, ZHANG H, CHEN K, et al. FMCW LiDAR using phase-diversity coherent detection to avoid signal aliasing[J]. IEEE Photonics Technology Letters, 2019, 31(22):1822-1825.

[11] ZHANG T, QU X H, ZHANG F M. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Optics Express, 2018, 26(9):11519-11528.

[12] ALAVI S E, SOLTANIAN M R K, AMIRI I S, et al. Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul[J]. Scientific Reports, 2016, 6: 19891.

[13] MATSKO A. Advances in the development of spectrally pure microwave photonic synthesizers[J]. IEEE Photonics Technology Letters, 2019, 31(23): 1882-1885.

[14] YAO J P, CAPMANY J. Microwave photonics[J]. Science China Information Sciences, 2022, 65: 221401.

[15] DEGLI-EREDI I, AN P L, DRASBAEK J, et al. Millimeter-wave generation using hybrid silicon photonics[J]. Journal of Optics, 2021, 23(4):043001.

[16] HOANG V N. A cost-effective DD-OFDM ROF system employing FBG and DML to generate optical mm-wave[J]. Journal of Optical Communications, 2014, 35(2):141-149.

[17] WANG Y Y, YANG Ch, CHI N, et al. Photonic frequency-quadrupling and balanced pre-coding technologies for W-band QPSK vector mm-wave signal generation based on a single DML[J]. Optics Communications, 2016, 367:239-243.

[18] KURI T, KITAYAMA K. Laser phase noise free optical heterodyne detection technique for 60-GHz-band radio-on-fiber systems[C]// International Topical Meeting on Microwave Photonics. New York, USA: IEEE, 2000: 141-144.

[19] LI J, NING T G, PEI L, et al. 60 GHz millimeter-wave generator based on a frequency-quadrupling feed-forward modulation technique[J]. Optics Letters, 2010, 35(21):3619-3621.

[20] CARPINTERO G, BALAKIER K, YANG Z, et al. Microwave photonic integrated circuits for millimeter-wave wireless communications[J]. Journal of Lightwave Technology, 2014, 32(20):3495-3501.

[21] XIAO J N, ZHANG Z R, LI X Y, et al. High-frequency photonic vector signal generation employing a single phase modulator[J]. IEEE Photonics Journal, 2015, 7(2):1-6.

[22] WU Z Y, Cao Ch Q, ZENG X D, et al. Filterless radio-over-fiber system to generate 40 and 80 GHz millimeter-wave[J]. IEEE Photonics Journal, 2020, 12(6):1-13.

[23] SHIH P T, CHEN J, LIN C T, et al. Optical millimeter-wave signal generation via frequency 12-tupling[J]. Journal of Lightwave Technology, 2009, 28(1):71-78.

[24] ZHANG Ch F, WANG L Y, QIU K. Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA[J]. Optics Express, 2011, 19(15):13957-13962.

[25] PARK C S, LEE C G, PARK C S. Photonic frequency upconversion by SBS-based frequency tripling[J]. Journal of Lightwave Technology, 2007, 25(7):1711-1718.

[26] KUMARI A, KUMAR A, GAUTAM A. Photonic generation and theoretical investigation of phase noise in quadrupling and 12-tupling millimeter wave signal using optical self-heterodyne system[J]. Optik—International Journal for Light and Electron Optics, 2021, 231(7):166432.

[27] PREM P K A, CHAKRAPANI A. A millimeter-wave generation scheme based on frequency octupling using LiNbO3 Mach-Zehnder modulator[J]. National Academy Science Letters, 2019, 42:401-406.

[28] LI X, ZHAO Sh H, ZHU Z H, et al. An optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing[J]. Journal of Modern Optics, 2015, 62(18):1502-1509.

[29] ZHU Z H, ZHAO Sh H, CHU X Ch, et al. Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter[J]. Optics Communications, 2015, 354:40-47.

[30] CHOI S T, YANG K S, NISHI S, et al. A 60-GHz point-to-multipoint millimeter-wave fiber-radio communication system[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(5):1953-1960.

[31] OH T K, KIM H J, LEE S H, et al. Photonic frequency quadrupling utilizing a LiNbO3 phase modulator and a Brillouin-assisted optical filter[C]// 2011 International Topical Meeting on Microwave Photonics Jointly Held with the 2011 Asia-Pacific Microwave Photonics Conference. New York, USA: IEEE, 2011: 195-197.

[32] CHAUDHURI R B, BARMAN A D, BOGONI A. Photonic 60 GHz sub-bands generation with 24-tupled frequency multiplication using cascaded dual parallel polarization modulators[J]. Optical Fiber Technology, 2020, 58:102244.

[33] BASKARAN M, PRABAKARAN R, GAYATHRI T S. Photonic generation of frequency 16-tupling millimeter wave signal using polarization property without an optical filter[J]. Optik—International Journal for Light and Electron Optics, 2019, 184(9):348-355.

[34] CHEN Y, WEN A J, SHANG L. Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach-Zehnder modulators[J]. Optics Communications, 2010, 283(24): 4933-4941.

[35] WANG T L, YUAN M Y, LIU B, et al. Triangular waveform generation with frequency doubling based on microwave photonics[J]. Laser Technology, 2019, 43(1): 79-82(in Chinese).

[36] RANI A, KEDIA D. Filterless millimeter-wave generation with tunable tupling factors using dual parallel-MZMs[C]//2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST). New York,USA: IEEE, 2022: 135-141.

阳琴, 陈孝林, 曾诚, 徐诗月, 杨俊敏, 张志坚, 杨峰, 高剑波. 基于DPMZM的微波光子倍频激光雷达仿真分析[J]. 激光技术, 2023, 47(6): 729. YANG Qin, CHEN Xiaolin, ZENG Cheng, XU Shiyue, YANG Junmin, ZHANG Zhijian, YANG Feng, GAO Jianbo. Simulation and analysis of LiDAR based on DPMZM and microwave photonic frequency multiplication[J]. Laser Technology, 2023, 47(6): 729.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!