激光技术, 2022, 46 (5): 685, 网络出版: 2022-10-14  

万瓦级激光光闸耦合失效的安全控制方法

Safety control method for the failure of 10kW-level optic switch coupling
作者单位
1 南京信息职业技术学院 电子信息学院, 南京 210023
2 南京理工大学 电子工程与光电技术学院, 南京 210094
摘要
为了解决万瓦级激光光闸耦合效率实时监测的难题, 采用通过实时探测光闸输出端工作光纤内部的后向散射光来监测耦合效率从而防止其耦合失效的安全控制方法, 仿真并建立了耦合偏差与后向散射光光强信号之间的映射规律与模型, 并基于此设计了相应的光闸耦合失效的安全控制系统。结果表明, 高功率激光光闸在安全控制系统的保证下能长期承载12kW以上功率, 并且耦合效率稳定在98%以上, 证明了该方法的有效性。该研究可以保证万瓦级激光光闸长期工作的高效性、稳定性及安全性, 促进我国激光制造领域关键部件的自主化。
Abstract
In order to solve the problem of real-time monitoring the coupling efficiency of 10kW-level optic switch, a safety control method was adopted to monitor the coupling efficiency by detecting the backscattered light inside the working fiber at the output end of the optic switch in real time, and then its coupling failure was prevented. The mapping law and model between coupling errors and signal of backscattered light intensity were simulated and established. Furthermore, the safety control system of the optic switch was designed. And the effectiveness of the method was proved through the simulations and experiments. The results show that the high-power optic switch can carry more than 10kW power for a long time under the guarantee of the safety control system, and the coupling efficiency is stable above 98%. This research can ensure the long-term efficiency, stability and safety of 10kW-level optic switch. It can promote the autonomy of key components in the field of laser manufacturing in China.
参考文献

[1] HU Ch J, WEI Y F, WANG Ch M, et al. Study on technology in 10kW fiber laser cutting of 2A12 medium-thickness aluminum alloy plate[J]. Applied Laser, 2020, 40(6): 1092-1098(in Chinese).

[2] CHEN G Y, CHEN F, ZHOU C, et al. Welding defect suppression of stainless steel thick plate joint by 10kW level laser welding[J]. Applied Laser, 2018, 38(2): 207-214(in Chinese).

[3] DANG W J, LI Zh, LI Y T, LU N, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694(in Chinese).

[4] YANG Y Q, WU Sh B, ZHANG Y, et al. Application progress and prospect of fiber laser in metal additive manufacturing[J]. Chinese Journal of Lasers, 2020, 47(5): 0500011(in Chinese).

[5] ZHOU X F, CHEN Z L, WANG Z F, et al. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling[J]. Applied Optics, 2016, 55(15): 4001-4004.

[6] LEI S Ch, KE X Zh, SHAO J H. Experimental study about fiber array coupling and auto-alignment[J]. Laser Technology, 2014, 38(2): 191-195(in Chinese).

[7] LI Y W, ZOU W F, LEE B Y, et al. Research progress of aluminum alloy welding technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109: 1207-1218.

[8] WANG L, MOHAMMADPOUR M, GAO X D, et al. Adjustable ring mode (ARM) laser welding of stainless steels[J]. Optics and Lasers in Engineering, 2021, 137: 106360.

[9] TIAN J, DENG N P, WU Ch X, et al. Study on laster power mea-surement method under different orders of magnitude and research[J]. Metrology & Measurement Technique, 2017, 44(12): 41-42(in Chinese).

[10] LI G P, CHEN Ch, LI D, et al. Study on parameters measurement technology of high energy and high power laser[J]. Journal of Applied Optics, 2020, 41(4): 645-650(in Chinese).

[11] CHEN Sh F, FANG F Zh. Development and applications of laser power meter[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900003(in Chinese).

[12] YAN P, SUN J Y, HUANG Y Sh, et al. Kilowatt-level cladding light stripper for high-power fiber laser[J]. Applied Optics, 2017, 56(7): 1935-1939.

[13] SUN J, ZOU Sh Zh, CHEN H, et al. Recent progress of high-power cladding light stripper[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110001(in Chinese).

[14] WYSMOLEK M, OTTENHUES C, PULZER T, et al. Microstructured fiber cladding light stripper for kilowatt-class laser systems[J]. Applied Optics, 2018, 57(23): 6640-6644.

[15] YIN L, YAN M J, HAN Zh G, et al. High power cladding light stripper using segmented corrosion method: Theoretical and experimental studies[J]. Optics Express, 2017, 25(8): 8760-8776.

[16] CAI W, CHEN P F, WANG Y, et al. Research of surface roughness measurement system based on laser scattering[J]. Laser Technology, 2020, 44(5): 611-615(in Chinese).

[17] BENNETT H E, PORTEUS J O. Relation between surface roughness and specular reflectance at normal incidence[J]. Journal of the Optical Society of America, 1961, 51(2): 123-129.

魏琰, 孔庆庆, 沈华. 万瓦级激光光闸耦合失效的安全控制方法[J]. 激光技术, 2022, 46(5): 685. WEI Yan, KONG Qingqing, SHEN Hua. Safety control method for the failure of 10kW-level optic switch coupling[J]. Laser Technology, 2022, 46(5): 685.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!