无机材料学报, 2020, 35 (7): 839, 网络出版: 2021-03-03  

Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能

Fabrication of Z-scheme BiVO4/GO/g-C3N4 Photocatalyst with Efficient Visble-light Photocatalytic Performance
作者单位
1 天津工业大学 环境科学与工程学院
2 天津工业大学 化学化工学院, 天津 300389
摘要
Z-型光催化剂可以有效增强电荷分离, 从而改善光催化剂的活性。采用浸渍-煅烧和水热法两步制备Z型BiVO4/GO/g-C3N4光催化剂, 并用不同手段对其进行表征。在BiVO4/GO/g-C3N4的光催化过程中, GO纳米片作为BiVO4和g-C3N4之间的快速传输通道, 可以抑制电子-空穴复合, 显著促进电荷分离, 提高三元异质结的氧化还原能力。与单组分或二元复合物相比, 该催化剂具有良好的光降解罗丹明B(RhB)的能力。在可见光照射下, 它能够在120 min内降解85% RhB, 空穴(h+)在反应中起主要作用。该工作为三元光催化剂体系提供了简单的制备方法, 其中g-C3N4通过GO与BiVO4偶联, 光催化活性显著提高。
Abstract
Fabricating Z-scheme photocatalysts is a promising method for improving photocatalytic activity by effectively enhancing charge separation. A new Z-scheme BiVO4/GO/g-C3N4 photocatalyst was prepared by two steps of impregnation-calcination and hydrothermal method, and then characterized by different methods. In the photocatalytic process of BiVO4/GO/g-C3N4, GO nanosheet act as fast transmission channels between BiVO4 and g-C3N4 and can suppress electron-hole recombination, which significantly promotes the charge separation and improves the redox ability of the ternary heterojunction. The ternary photocatalyst has good photocatalytic degradation of Rhodamine B (RhB) as compared to the single-component or binary composite. It is capable of degrading 85% of RhB in 120 min under visible light irradiation and the hole (h+) plays a major role in the reaction. This work provides a simple preparation method for a ternary photocatalyst system in which g-C3N4 coupled with BiVO4 by GO to significantly improve photocatalytic activity.

许世超, 朱天哲, 乔阳, 白学健, 唐楠, 郑春明. Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能[J]. 无机材料学报, 2020, 35(7): 839. Shichao XU, Tianzhe ZHU, Yang QIAO, Xuejian BAI, Nan TANG, Chunming ZHENG. Fabrication of Z-scheme BiVO4/GO/g-C3N4 Photocatalyst with Efficient Visble-light Photocatalytic Performance[J]. Journal of Inorganic Materials, 2020, 35(7): 839.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!