应用激光, 2023, 43 (6): 0019, 网络出版: 2024-02-02  

12ER9车轮表面两种激光熔覆涂层海水环境下的摩擦学性能

Tribological Properties of Two Laser Cladding Coatings on ER9 Wheel Steel Surface inSeawater Environment
作者单位
1 华东交通大学轨道交通基础设施性能检测与保障国家重点实验室,江西 南昌 330013
2 浙江师范大学浙江省城市轨道交通智能运维技术与装备重点实验室,浙江 金华 321005
摘要
研究所设计Fe基和Co基合金激光熔覆层的组织结构及海水环境下摩擦磨损行为,用于解决地铁ER9车轮钢表面防护与修复问题。采用激光熔覆技术在ER9车轮钢表面制备Fe基合金涂层和Co基合金涂层,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对比分析了两种熔覆层的微观组织结构、物相及化学元素组成,利用往复摩擦试验机考察了其在海水环境下的摩擦学性能。结果表明:在海水环境下的滑动摩擦中,车轮钢基体表面覆盖了大面积腐蚀产物且呈现出大量平行于滑动方向的沟槽。而在两种熔覆涂层中,铁基合金涂层主要由α-Fe、(Fe,Ni)和Cr7C3等固溶体组成,平均硬度(约638.8 HV)相当于基体(284.8~293.2 HV)的2.21倍,摩擦因数约为0.270,磨损率为9.64×10-5 mm3/(N·m),磨损机制以轻微磨粒磨损为主,同时伴有腐蚀磨损。钴基合金涂层的结晶相主要是FeNi3相、γ-Co相和Cr23C6相,平均硬度(约467.9 HV)是基体约1.62倍,摩擦因数约为0.225,磨损率为3.06×10-5 mm3/(N·m),磨损机制主要为轻微氧化磨损。
Abstract
The microstructure, friction, and wear behavior of Fe-based and Co-based alloy laser cladding layers in a seawater environment were studied and designed to solve the surface protection and repair problems of subway ER9 wheel steel. Fe-based alloy coating and Co-based alloy coating were prepared on the surface of ER9 wheel steel by laser cladding technology, and the microstructure, phase, and chemical element composition of the two cladding layers were compared and analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The tribological properties of the two coatings in a seawater environment were investigated by reciprocating friction testers. The results show that in the sliding friction in a seawater environment, the surface of the wheel steel substrate is covered with a large area of corrosion products and presents a large number of grooves parallel to the sliding direction. In the two cladding coatings, the iron-based alloy coating is mainly composed of solid solutions such as α-Fe, (Fe, Ni) and Cr7C3, and the average hardness (about 638.8 HV) is equivalent to that of the matrix (284.8~293.2 HV) 2.21 times, the friction coefficient is about 0.270, the wear rate is 9.64×10-5 mm3/(N·m), the wear mechanism is mainly slight abrasive wear, accompanied by corrosion wear. The crystal phases of the cobalt-based alloy coating are mainly the FeNi3 phase, γ-Co phase, and Cr23C6 phase, the average hardness (about 467.9 HV) is about 1.62 times that of the matrix, the friction coefficient is about 0.225, and the wear rate is 3.06×10-5 mm3/(N·m). The wear mechanism is mainly slight oxidative wear.
参考文献

[1] 任勇, 成光. 海洋环境金属材料腐蚀与防护仿真研究进展[J]. 装备环境工程, 2019, 16(12): 93-98.REN Y, CHENG G. Research progress on corrosion and protection simulation of metal materials in marine environment[J]. Equipment Environmental Engineering, 2019, 16(12): 93-98.

[2] 黄海平. 海洋环境下金属陶瓷复合涂层的制备与性能研究[D]. 广州: 广东工业大学,2020.HUANG H P.Preparation and properties of cermet composite coating in marine environment[D].Guangzhou: Guangdong University of Technology,2020.

[3] 夏兰廷, 王录才, 黄桂桥. 我国金属材料的海水腐蚀研究现状[J]. 中国铸造装备与技术, 2002(6): 1-4.XIA L T, WANG L C, HUANG G Q. Present status of research on sea-water corrosion of metal in China[J]. China Foundry Machinery & Technology, 2002(6): 1-4.

[4] ZHANG Z, FARAHMAND P, KOVACEVIC R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 2016, 109: 686-699.

[5] SUN S D, FABIJANIC D, GHADERI A, et al. Microstructure and hardness characterisation of laser coatings produced with a mixture of AISI 420 stainless steel and Fe-C-Cr-Nb-B-Mo steel alloy powders[J]. Surface and Coatings Technology, 2016, 296: 76-87.

[6] ZENG C, TIAN W, LIAO W H, et al. Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings[J]. Surface and Coatings Technology, 2016, 294: 122-130.

[7] 李健. 激光熔覆在海洋工程上的应用现状[J]. 科技信息, 2012(3): 85-86.LI J . The application of laser cladding in the marine engineering[J]. Science & Technology Information, 2012(3): 85-86.

[8] LIU C S, WEI D D, XU R S, et al. Electroplated Co-Ni/WS2 composite coating with excellent tribological and anticorrosion performance[J]. Tribology Transactions, 2020, 63(5): 857-866.

[9] HU M, TANG J C, CHEN X G, et al. Microstructure and properties of WC-12Co composite coatings prepared by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 1017-1030.

[10] 白杨, 王振华, 左娟娟, 等. 激光熔覆制备铁基复合涂层及其耐热耐蚀性能[J]. 中国激光, 2020, 47(10): 1002001.BAI Y, WANG Z H, ZUO J J, et al. Preparation of Fe-based composite coating by laser cladding and its thermal resistance and corrosion resistance[J]. Chinese Journal of Lasers, 2020, 47(10): 1002001.

[11] 黄瑞芬, 罗建民, 王春琴. 激光熔覆技术的应用及其发展[J]. 兵器材料科学与工程, 2005, 28(4): 57-59.HUANG R F, LUO J M, WANG C Q. Applications and developments of laser cladding technology[J]. Ordnance Material Science and Engineering, 2005, 28(4): 57-59.

[12] 曹旺萍, 李银标, 王振宇. 45钢表面激光熔覆钴基涂层组织与磨损性能研究[J]. 应用激光, 2022, 42(2): 41-47.CAO W P, LI Y B, WANG Z Y. Study on microstructure and properties of wear-resistant coating on 45 steel surface by laser cladding[J]. Applied Laser, 2022, 42(2): 41-47.

[13] 周丹, 郭计山, 熊大辉, 等. TiC含量对激光熔覆铁基涂层特性的影响[J]. 应用激光, 2021, 41(6): 1189-1195.ZHOU D, GUO J S, XIONG D H, et al. Effect of TiC content on the properties of Fe based coating by laser cladding[J]. Applied Laser, 2021, 41(6): 1189-1195.

[14] 慕鑫鹏, 王文健, 祝毅, 等. 两种激光熔覆涂层对轮轨材料磨损与损伤性能的影响[J]. 摩擦学学报, 2020, 40(2): 225-233.MU X P, WANG W J, ZHU Y, et al. Effects of two laser cladding coatings on wear and damage properties of wheel/rail materials[J]. Tribology, 2020, 40(2):225-233.

[15] 丁阳喜, 邵晓峰, 袁颖群, 等. 高速车轮钢表面激光熔覆铁基合金涂层的摩擦磨损性能[J]. 材料保护, 2017, 50(4): 6-9.DING Y X, SHAO X F, YUAN Y Q, et al. Friction and wear performance of laser cladding iron-based alloy coating on high-speed wheel steel[J]. Materials Protection, 2017, 50(4): 6-9.

[16] 丁阳喜, 张远昊, 邵晓峰. 激光熔覆层对轮轨滚动接触疲劳磨损性能的影响[J]. 热加工工艺, 2020, 49(2): 80-83.DING Y X, ZHANG Y H, SHAO X F.Effect of laser cladding on fatigue wear performance of wheel-rail rolling contact[J]. Hot Working Technology, 2020, 49(2): 80-83.

[17] GUO H M, WANG Q, WANG W J, et al. Investigation on wear and damage performance of laser cladding Co-based alloy on single wheel or rail material[J]. Wear, 2015, 328/329: 329-337.

[18] HAN B, ZHANG M K, QI C H, et al. Characterization and friction-reduction performances of composite coating produced by laser cladding and ion sulfurizing[J]. Materials Letters, 2015, 150: 35-38.

[19] 许国敬. H13钢表面激光熔覆Co基合金覆层组织与性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.XU G J.Microstructure and properties of laser cladding Co-based alloy coating on H13 steel surface[D].Harbin: Harbin Institute of Technology,2017.

[20] 慕鑫鹏. 车轮材料激光熔覆涂层微观组织与磨损性能研究[D]. 成都: 西南交通大学,2020.MU X P.Study on microstructure and wear properties of laser cladding coating on wheel materials[D].Chengdu: Southwest Jiaotong University,2020.

[21] 曹俊. H13模具钢表面激光再制造Fe基合金熔覆层组织和性能的研究[D]. 镇江: 江苏大学, 2019.CAO J.Study on microstructure and properties of laser remanufactured Fe-based alloy cladding layer on H13 die steel surface[D].Zhenjiang: Jiangsu University,2019 .

[22] 田玉亮, 李杰. Cr含量对铁基激光熔覆层组织与性能的影响[J]. 矿冶, 2020, 29(6): 74-79.TIAN Y L, LI J. Effect of Cr content on the structure and properties of Fe-based laser cladding layers[J]. Mining and Metallurgy, 2020, 29(6): 74-79.

[23] 李野. 工具钢表面激光熔覆Ni-Cu-Si耐磨蚀涂层及其性能研究[D]. 沈阳: 东北大学,2015.LI Y.Study on Ni-Cu-Si wear-resistant coating on tool steel surface by laser cladding and its properties[D].Shenyang: Northeastern University,2015.

[24] 张远昊. 高速轮轨耦合振动行为下放电损伤的激光熔覆抑制研究[D]. 南昌: 华东交通大学,2020.ZHANG Y H.Study on laser cladding suppression of discharge damage under high-speed wheel-rail coupled vibration[D].Nanchang: East China Jiaotong University,2020.

[25] ZHOU J L, KONG D J. Immersion corrosion and electrochemical performances of laser cladded FeSiB, FeSiBCr and FeSiBCrMo coatings in 3.5 wt% NaCl solution[J]. Surface and Coatings Technology, 2020, 383: 125229.

[26] 徐思成, 李增权. Fe-Cr基激光熔覆层的耐腐蚀性能[J]. 热加工工艺, 2013, 42(10): 160-162.XU S C, LI Z Q. Corrosion resistance of Fe-Cr based laser cladding layer[J]. Hot Working Technology, 2013, 42(10): 160-162.

[27] 徐家乐. 电磁超声复合能场辅助激光熔覆钴基合金涂层组织及性能研究[D]. 镇江: 江苏大学,2019XU J L. Study on microstructure and properties of cobalt-based alloy coating by electromagnetic ultrasonic composite energy field assisted laser cladding[D].Zhenjiang: Jiangsu University,2019.

[28] 任书芳, 孟军虎, 吕晋军, 等. Ti3SiC2、不锈钢和NiCr合金在人工海水中的摩擦学性能[J]. 摩擦学学报, 2013, 33(4): 363-371.REN S F, MENG J H,L J J, et al. Tribological properties of Ti3SiC2, stainless steel and NiCr alloy in artificial seawater[J]. Tribology, 2013, 33(4): 363-371.

[29] DING Y P, LIU R, WANG L, et al. Corrosion and wear performance of stellite alloy hardfacing prepared via laser cladding[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56(2): 392-404.

杨文斌, 李仕宇, 肖乾, 陈道云, 杨春辉, 张博. 12ER9车轮表面两种激光熔覆涂层海水环境下的摩擦学性能[J]. 应用激光, 2023, 43(6): 0019. Yang Wenbin, Li Shiyu, Xiao Qian, Chen Daoyun, Yang Chunhui, Zhang Bo. Tribological Properties of Two Laser Cladding Coatings on ER9 Wheel Steel Surface inSeawater Environment[J]. APPLIED LASER, 2023, 43(6): 0019.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!