中国激光, 2024, 51 (8): 0808001, 网络出版: 2024-03-29  

高功率单共振光学参量振荡器的输出特性研究【增强内容出版】

Study on Output Characteristics of High-Power Singly Resonant Optical Parametric Oscillator
作者单位
1 太原师范学院物理系,山西 晋中 030619
2 山西大学光电研究所量子光学与光量子器件国家重点实验室,山西 太原 030006
3 山西大学极端光学协同创新中心,山西 太原 030006
摘要
研究了在高抽运功率下,单共振光学参量振荡器(SRO)腔型对其输出特性的影响。在理论分析的基础上,实验搭建了基于掺杂氧化镁的周期性极化铌酸锂(MgO∶PPLN)晶体的两镜驻波腔和四镜环形腔SRO。驻波腔SRO的阈值抽运功率为3.2 W,当抽运光功率为14.2 W时,信号光和闲频光功率分别为5.2 W和2.2 W。当抽运光功率大于15 W时,驻波腔SRO输出功率的实测值随抽运光功率的增大而减小,与理论预测偏差较大。环形腔SRO的阈值抽运功率为7.2 W,当抽运光功率为25 W时,信号光和闲频光功率分别为8.1 W和3.6 W。环形腔SRO输出功率的实测值和理论预测基本一致。驻波腔及环形腔SRO输出的信号光在2 h内的功率波动分别优于±2.76%和±2.53%,驻波腔及环形腔SRO输出的闲频光在2 h内的功率波动分别优于±1.24%和±1.19%。驻波腔及环形腔SRO输出信号光的长期频率漂移分别优于±40 MHz及±28 MHz。
Abstract
Objective

1.5?1.8 μm and 3?5 μm infrared lasers are widely used in free-space optical communication, trace gas monitoring, environmental pollution monitoring, and biomedicine. Infrared lasers can be obtained using quantum cascade, fiber, solid-state, and Raman lasers. Compared with these methods, an optical parametric oscillator (OPO) can be used to achieve an infrared laser with a wider tuning range, higher power, and more stable operation. Based on the resonance of the pump, signal, and idler laser in the OPO cavity, the OPO can be referred to as singly resonant OPO (SRO), doubly resonant OPO (DRO), or triply resonant OPO (TRO). Compared with DRO and TRO, SRO requires only that the signal (or idler) light resonates in the cavity, has a relatively simple design, and no external servo system locking is required to obtain a stable, high-power output. Therefore, the output characteristics of a high-power SRO are investigated in this study.

Methods

First, a theoretical analysis is conducted on the influence of the SRO cavity length and nonlinear crystal thermal lens effect on the stability of the resonant cavity under standing-wave and ring-cavity structures. To ensure a stable operation of the SRO within significant changes in the resonant cavity parameters, the cavity length corresponding to |(A+D)/2|=0 is selected when the SRO is designed, that is, the standing wave cavity length is 54 mm, and the ring cavity length is 516 mm. According to the focusing factor selected for the SRO cavity, the waist spot of the signal light at the center of the MgO∶PPLN crystal is calculated to be 59.5 μm. Subsequently, based on the design of the SRO resonant cavity structure, the laser output characteristics of different SRO cavity types are theoretically analyzed. The theoretical analysis reveals that the pump light in the standing-wave cavity SRO passes through the nonlinear crystal twice; therefore the power gain of the signal light during forward and backward transmission must be considered simultaneously, whereas the pump light in the ring-cavity SRO passes through the nonlinear crystal in a single pass, and the parametric interaction during backward transmission is not considered. The threshold pump power and output power of the signal and idler light from the standing-wave cavity and ring-cavity SROs are calculated. Finally, the two mirror standing-wave cavity SROs and four mirror ring-cavity SROs based on the MgO∶PPLN crystal pumped by a high-power continuous-wave single frequency 1.06 μm laser are constructed, and the relationship between the output power of the signal and idler light with the pump power, as well as the power fluctuation and frequency drift of the signal and idler light are studied.

Results and Discussions

By controlling the temperature of MgO∶PPLN from 30 ℃ to 65 ℃, the signal wavelength can be tuned from 1550.03 nm to 1561.38 nm, and the corresponding idler wavelength can be tuned from 3394.7 nm to 3340.13 nm. When the temperature of the MgO∶PPLN crystal is controlled as 40 ℃, the signal and idler wavelengths of the SRO are 1.553 μm and 3.378 μm, respectively. The threshold pump power of the standing-wave cavity SRO is 3.2 W, and at a pump power of 14.2 W, the signal and idler powers are 5.2 W and 2.2 W, respectively. The threshold pump power of the ring-cavity SRO is 7.2 W, and at the pump power of 25 W, the signal and idler powers are 8.1 W and 3.6 W, respectively. The measured value of the ring-cavity SRO output power is in good agreement with the theoretical prediction result (Fig. 6). When the pump power is less than 15 W, the measured standing-wave cavity SRO output power agrees well with the theoretical prediction result; however, when the pump power is greater than 15 W, the measured standing-wave cavity SRO output power deviates significantly from the theoretical prediction result ( Fig. 6). According to the theoretical analysis, when the pump power is 15 W, the resonant signal power in the standing-wave cavity SRO is 260 W. The thermal lens focal length of the nonlinear crystal is 14 mm, and the corresponding stability parameter of the standing-wave cavity SRO is 0.98. An increase in the pump power results in the stability parameter of the standing-wave cavity SRO to be greater than 1; the SRO cannot operate stably, and the output power of the SRO decreases. To obtain a higher output power from the signal and idler lasers, the ring-cavity SRO is a better choice. In addition, when the signal and idler output powers from the standing-wave cavity and ring-cavity SROs are 5.0 W and 2.0 W, respectively, the power fluctuations in the signal and idler light by the standing-wave cavity SRO within 2 h are better than ±2.76% and ±2.53%, and the power fluctuations in the signal and idler light by the ring-cavity SRO within 2 h are better than ±1.24% and ±1.19%, respectively. The long term frequency drift of the signal is better than ±40 MHz and ±28 MHz, respectively.

Conclusions

The influence of the SRO cavity type on the output characteristics at high pump power is investigated in this study. First, a theoretical analysis is conducted on the influence of the SRO cavity length and nonlinear crystal thermal lens effect on the stability of the resonant cavity under the standing-wave cavity and ring-cavity structures. Notably, the ring-cavity SRO can operate stably within significant changes in the resonant cavity parameters. The output characteristics of the SRO are also theoretically analyzed. Second, a two-mirror standing-wave cavity and a four-mirror ring-cavity SROs based on a MgO∶PPLN crystal are experimentally constructed. At a pump power of 14.2 W, the signal and idler output powers from the standing-wave cavity SRO are 5.2 W and 2.2 W, respectively. At a pump power of 25 W, the signal and idler output powers from the ring-cavity SRO are 8.1 W and 3.6 W, respectively. The measured value of the ring-cavity SRO output power agrees well with the theoretical prediction result. The power fluctuations in the signal and idler light from the standing-wave cavity SRO within 2 h are better than ±2.76% and ±2.53%, and the power fluctuations in the signal and idler by the ring-cavity SRO within 2 h are better than ±1.24% and ±1.19%, respectively. The long term frequency drift of signal light from the standing-wave cavity and ring-cavity SROs are better than ±40 MHz and ±28 MHz, respectively. The research results indicate that to obtain a higher output power from the signal and idler lasers, the ring-cavity SRO is a good choice.

1 引言

波长位于1.5~1.8 μm和3~5 μm的红外激光在自由空间光通信1、痕量气体监测2、环境污染监测3、生物医学4等领域中具有广泛的应用。利用量子级联激光器5、光纤激光器6、固体激光器7、拉曼激光器8等均能获得红外激光输出。与这些方式相比,光学参量振荡器(OPO)9-12不仅能获得调谐范围更宽的激光输出,且更容易实现高功率和高稳定性的激光输出。此外,根据OPO腔内抽运光、信号光和闲频光的共振情况,可将其分为单共振OPO(SRO)、双共振和三共振OPO。其中,SRO只需使信号光(或者闲频光)在OPO腔内共振,其设计比较简单,容易获得调谐范围更宽和输出特性更稳定的红外激光。

早在1996年,Bosenberg等13通过实验研究发现,利用1.06 μm单频激光器抽运基于周期性极化铌酸锂(PPLN)晶体的环形腔SRO输出的红外激光更易于保持单纵模运转。2006年,Henderson等14利用1.08 μm光纤激光器抽运基于掺杂氧化镁的PPLN(MgO∶PPLN)晶体的SRO,获得了输出功率为750 mW的2.80 μm闲频光输出,阈值功率为780 mW,光光转换效率达26.7%。2016年,姜洪波等15通过优化抽运光功率和输出镜反射率,获得了8 W的2.90 μm闲频光输出,光光转换效率为19.5%。2019年,Bae等16利用1.06 μm激光抽运基于扇形MgO∶PPLN晶体的OPO,当抽运光功率为1.1 W时,获得了最高功率为64 mW的3.50 μm闲频光输出,光光转化效率为5.8%。2021年,Wang等17采用内腔式OPO结构,抽运光波长为1.06 μm,当抽运光功率为9.1 W时,获得了1.08 W的3.19 μm闲频光输出,光光转换效率为11.88%。2022年,王海龙等18利用1.06 μm单频激光器抽运基于MgO∶PPLN和PPKTP晶体的环形腔SRO,当抽运光功率为21 W时,1.55 μm信号光、3.39 μm闲频光和0.775 μm倍频光的输出功率分别为2.1、1.7、1.1 W,5 h内的功率稳定性(均方根)分别优于2.5%、1.6%、0.8%,总光光转换效率为23.3%。

为了进一步优化SRO输出红外激光的转换效率和稳定性,本文研究了SRO的腔型对其输出特性的影响。首先从理论上分析了SRO腔长以及非线性晶体对腔内共振信号光的吸收导致的热透镜效应对谐振腔稳定性参数的影响,在此基础上进一步分析了SRO的阈值抽运功率以及输出激光功率随抽运光功率的变化关系。然后在实验上搭建了利用高功率全固态连续单频1.06 μm激光器抽运的两镜驻波腔和四镜环形腔SRO,其由MgO∶PPLN晶体构成,信号光共振且部分耦合输出,研究了两种腔型下SRO输出信号光和闲频光功率随抽运光功率的变化,以及输出激光的长期功率波动和频率漂移。

2 理论分析

SRO的抽运激光为高斯光束,如果选取的聚焦因子较大,虽然可以获得较低的阈值抽运功率,但晶体本身存在的热效应会导致输出激光的稳定性和光束质量变差。为了优化SRO的输出特性,选择共焦聚焦(即聚焦因子为1)设计SRO。我们将在设计SRO腔型结构的基础上,理论分析SRO腔的腔长和非线性晶体的热透镜焦距对SRO腔稳定性参数的影响以及不同腔型SRO的激光输出特性。

驻波腔SRO的结构如图1所示。驻波腔SRO由两个曲率半径为r1的平凹镜M1、M2和非线性晶体构成,其中信号光在腔内共振并通过M2部分耦合输出,闲频光单次穿过非线性晶体后通过M2输出,抽运光两次穿过非线性晶体,非线性晶体端面到凹面镜的距离均为l1

图 1. 驻波腔SRO的结构示意图

Fig. 1. Structural diagram of standing wave cavity SRO

下载图片 查看所有图片

环形腔SRO的结构如图2所示。环形腔SRO由曲率半径为r2的平凹镜M3、M4以及平面镜M5、M6和非线性晶体构成,其中信号光在腔内共振并通过M6部分耦合输出,闲频光和抽运光单次穿过非线性晶体后通过M4输出,非线性晶体端面到M3和M4的距离均为l2,信号光从M4经M5和M6传输到M3的距离为l3。非线性晶体为MgO∶PPLN晶体,其长度为l,信号光在非线性晶体中的折射率为ns。注入到SRO腔前的抽运光功率为Pp0

图 2. 环形腔SRO的结构示意图

Fig. 2. Structural diagram of ring cavity SRO

下载图片 查看所有图片

首先利用谐振腔的ABCD矩阵分析计算SRO腔长和腔内MgO∶PPLN晶体的热透镜焦距对谐振腔稳定性参数的影响。在高功率抽运条件下,非线性晶体对内腔共振信号光的吸收会导致热透镜效应。由于闲频光单次穿过、抽运光双次穿过非线性晶体,忽略非线性晶体对闲频光和抽运光的吸收。假定信号光的腰斑位置与非线性晶体的中心重合,可得到MgO∶PPLN晶体的热透镜焦距(f19

f=πKcαsPsdn/dT×ω0s2l

式中:Kc为MgO∶PPLN晶体的热导率,Kc=4020 W·K-1ω0s为非线性晶体中心处信号光的腰斑;αs为MgO∶PPLN晶体对信号光的吸收系数,αs≈0.008%·mm-1Ps为SRO内腔共振的信号光功率;dn/dT为MgO∶PPLN晶体折射率(n)随温度(T)的变化,dn/dT=5×10-6 K-1

由于MgO∶PPLN非线性晶体较长(实验研究中其长度l=30 mm),在理论分析过程中,将MgO∶PPLN晶体的热透镜等效为间距相同的焦距均为8f的8个薄透镜,则信号光在非线性晶体中传输一半距离(l/2)的矩阵可以表示为

M=1l16ns0110-18f11l16ns014

设定SRO腔内共振的信号光从晶体中心处开始传输,由此可得到驻波腔和环形腔SRO的传输矩阵分别为

AsBsCsDs=M1l10110-2r111l101M21l10110-2r111l101MArBrCrDr=M1l20110-2r211l30110-2r211l201M

式中:s和r分别表示驻波腔和环形腔。

SRO稳定运转须满足谐振腔的稳定性条件 |(A+D)/2|<1。图3中的虚线和实线分别是利用式(3)、(4)计算得到的驻波腔和环形腔SRO的稳定性参数(A+D)/2随腔长(驻波腔的腔长为2l1+l,环形腔的腔长为2l2+l3+l)的变化,其中l2=50,r1=25 mm,r2=100 mm,ns=2.13,非线性晶体的等效热焦距f选取为25 mm(信号光输出功率为3 W时对应的热透镜焦距值,此时腔内共振信号光的内腔功率约为145 W)。由图3可以看出:当驻波谐振腔的腔长从35 mm增加到65 mm时,SRO均可稳定运转,满足谐振腔稳定性条件的腔长变化范围仅为30 mm;当环形谐振腔的腔长从135 mm增加到905 mm时,SRO均可稳定运转,满足谐振腔稳定性条件的腔长变化范围长达770 mm。为了使SRO在较大的谐振腔参数变化范围内均可稳定运转,在设计SRO时,选择谐振腔的腔长为 |(A+D)/2|=0时对应的腔长,即选择驻波腔腔长为54 mm(l1=12 mm),环形腔腔长为516 mm(l3=386 mm)。

图 3. SRO腔的稳定性参数随谐振腔腔长的变化

Fig. 3. Stability parameter of SRO cavity versus resonator cavity length

下载图片 查看所有图片

在SRO腔长确定后,由式(1)~(4)可以分别计算出驻波腔和环形腔SRO的稳定性参数随热透镜焦距的变化规律,如图4中的虚线和实线所示。可以看出,当非线性晶体的热透镜焦距小于14 mm时(此时腔内共振信号光的功率约为260 W),驻波腔SRO的稳定性参数大于1,SRO已不能稳定运转。即使非线性晶体的热透镜焦距小于10 mm(此时腔内共振信号光的功率约为370 W),环形腔SRO的稳定性参数仍然小于1,SRO还能稳定运转。

图 4. SRO腔的稳定性参数随MgO∶PPLN晶体热透镜焦距的变化

Fig. 4. Stability parameter of SRO cavity versus thermal focal length of MgO∶PPLN crystal

下载图片 查看所有图片

在设计SRO谐振腔结构的基础上,下一步将理论分析不同腔型SRO的激光输出特性。驻波腔和环形腔SRO腔内各光场的分布如图1图2所示,SRO腔中频率为ωp的抽运光入射到非线性晶体中,产生频率为ωsωi的信号光和闲频光。在实际研究中选择聚焦因子为1,非线性晶体长度小于腔模的瑞利长度,抽运光、信号光和闲频光在其瑞利长度内可以近似为准直高斯光束。驻波腔SRO中的抽运光两次穿过非线性晶体,因此需要同时考虑正向传输和反向传输时信号光的功率增益。假设非线性晶体的相位失配可以忽略不计,则驻波腔内信号光正向和反向传输时的功率增益20分别为

                     ΔPss=-8deffε0ωsImAs*ApAi*dxdydz=8deffε0ωs02πrdrq1*qAs*Ap020ldzsin(qz)cos(qz)=                                    2λpλsPsp0exp-2usin2gslexp-mudu,                                                                                                (5)       ΔPss'=2λpλsPsp'0exp-2usin2gslexp-mudu=                    2λpλsPsp1-20exp-2usin2gslexp-mudu0exp-2u'sin2gslexp-mu'du',                       (6)

式中:As*为非线性晶体中信号光场振幅的共轭;Ai*为非线性晶体中闲频光场振幅的共轭;xyz为光束坐标;q1*=4πdeffλiniAs,其中As为非线性晶体中信号光场的振幅,λi为非线性晶体中闲频光的波长,ni为非线性晶体中闲频光的折射率;u为抽运光第一次穿过非线性晶体时光束的径向坐标与抽运光腰斑平方的比值;u'为抽运光第二次穿过非线性晶体时光束的径向坐标与抽运光腰斑平方的比值;q1=4πdeffλiniAs*q2=4πdeffλpnpAs,其中np为非线性晶体中抽运光的折射率;q=q1q2deff为非线性晶体的二阶非线性系数;ε0为真空介电常数;Apλp分别为非线性晶体中抽运光场的振幅、波长;λsns分别为非线性晶体中信号光场的波长和折射率;Ai为非线性晶体中闲频光场的振幅; r为径向坐标;m为抽运光和信号光腰斑的重叠度;Psp为驻波腔内的抽运光功率;gs为常数,满足gs2l2=32π2deff2lξsPssnpnsλi2λpcε0k-1ξs为信号光的聚焦因子,Pss为驻波腔内共振信号光功率,k=kp/kskpks分别为抽运光和信号光的波矢大小,c为真空中的光速;Psp'为反向传输时穿过非线性晶体的抽运光功率,表示为

Psp'=Psp1-20exp-2usin2gslexp-mudu

驻波腔内信号光的振荡条件为

Tss+VssPss=ΔPss+ΔPss'

式中:Tss为M2对信号光的透射率;Vss为驻波腔内信号光循环一周所经历的其他损耗。SRO的阈值附近,gs很小,由此得到驻波腔SRO的阈值抽运功率为

Psth=Tss+Vss1+mk-1npnsλi2λscε064π2deff2lξs

根据边界条件,驻波腔SRO输出的信号光和闲频光功率分别为

Pss,out=TssPssPsi,out=λsλiTss+VssPss

与驻波腔相比,环形腔SRO中的抽运光单次穿过非线性晶体,不需要考虑反向传输时的参量相互作用,因此环形腔中信号光的功率增益20

ΔPrs=2λpλsPrp0exp-2usin2grlexp-mudu

式中:Prp为环形腔内的抽运光功率;gr为常数,满足gr2l2=32π2deff2lξsPrsnpnsλi2λpcε0k-1,其中Prs为环形腔内共振信号光功率。

环形腔内信号光的振荡条件为

ΔPrs=Trs+VrsPrs

式中:Trs为M6对信号光的透射率;Vrs为环形腔内信号光循环一周所经历的其他损耗。阈值附近gr很小,由此得到环形腔SRO的阈值抽运功率为

Prth=Trs+Vrs1+mk-1npnsλi2λscε032π2deff2lξs

根据边界条件,环形腔SRO输出的信号光和闲频光功率分别为

Prs,out=TrsPrsPri,out=λsλiTrs+VrsPrs

可以利用式(9)、(10)、(13)、(14)以及实验参数分别计算驻波腔、环形腔SRO的阈值抽运功率及输出的信号光和闲频光的功率。

3 实验装置

图5为利用基于MgO∶PPLN晶体的SRO获得连续单频红外激光输出的实验装置。抽运光源为自制的全固态连续单频1.06 μm激光器,输出功率为30 W、线宽为200 kHz、1 min内的频率漂移小于5 MHz。抽运光首先经过半波片1(HWP1)和光隔离器(OI)以防止反射光入射到激光器中影响其正常运转,然后通过半波片2(HWP2)控制抽运光进入SRO腔的偏振方向。实验测量得到光隔离器中抽运光的透射率为88%。抽运光在注入到SRO腔之前,经过的光学元件对其功率都有一定程度的损耗,因此SRO腔前抽运光的功率最大为25.5 W。驻波腔SRO的输入耦合镜M2的凹面镀有抽运光高透膜及闲频光和信号光高反膜(透射率T>95%@1.06 μm,反射率R>99.8%@1.5 μm &3.3 μm),平面镀有抽运光减反膜(R<0.2%@1.06 μm);输出耦合镜M3的凹面镀有抽运光高反膜、闲频光高透膜和信号光部分反射膜(R>99.8%@1.06 μm,T>95%@3.3 μm,R=97.5%@1.5 μm),平面镀有信号光和闲频光减反膜(R<0.2%@1.5 μm & 3.3 μm)。环形腔SRO的输入镜M4的凹面镀有抽运光高透膜及信号光和闲频光高反膜(T>95%@1.06 μm,R>99.8%@1.5 μm & 3.3 μm),平面镀有抽运光减反膜(R<0.2%@1.06 μm);平凹镜M5的凹面镀有信号光高反膜、闲频光高透膜(R>99.8%@1.5 μm,T>95%@ 3.3 μm),平面镀有抽运光和闲频光减反膜(T>95%@1.06 μm & 3.3 μm);平面镜M6的正面镀有信号光高反膜(R>99.8%@1.5 μm);平面镜M7的正面镀有信号光部分反射膜(R=97.5%@1.5 μm),背面镀有信号光减反膜(R<0.2%@1.5 μm)。M3和M5固定在压电陶瓷(PZT)上,通过驱动PZT控制和锁定SRO的腔长。腔内非线性晶体采用尺寸(厚度×宽度×长度)为1 mm×10 mm×30 mm、掺杂氧化镁的质量分数为5%的MgO∶PPLN晶体,晶体的端面均镀有抽运光、信号光和闲频光减反膜(R<0.5%@1.06 μm & 1.5 μm & 3.3 μm),极化周期为30.6 μm。利用控温精度为0.01 ℃的温度控制仪控制MgO∶PPLN晶体的温度。用功率计测量SRO输出的信号光和闲频光的功率和功率波动,利用波长计测量信号光的波长及频率漂移。

图 5. 利用单共振光学参量振荡器产生连续单频红外激光的实验装置

Fig. 5. Experimental setup for generating continuous-wave single-frequency infrared laser by SRO

下载图片 查看所有图片

4 实验结果

当控制MgO∶PPLN晶体的温度为40 ℃时,SRO输出的信号光和闲频光波长分别为1.553 μm和3.378 μm。驻波腔SRO输出的信号光和闲频光功率随抽运光功率变化的数据如图6中的三角形和方块所示,驻波腔SRO的阈值抽运功率为3.2 W。当抽运光功率为14.2 W时,驻波腔SRO输出的信号光和闲频光功率分别为5.2 W和2.2 W,光光转换效率为52.1%。环形腔SRO输出的信号光和闲频光功率随抽运光功率变化的数据如图6中的星形和实心圆所示,环形腔SRO的阈值抽运功率为7.2 W。当抽运光功率为25 W时,环形腔SRO输出的信号光和闲频光功率分别为8.1 W和3.6 W,光光转换效率为46.8%。图6中的实线从上到下分别为利用式(9)、(10)、(13)和(14)以及下述实验参数理论计算得到的驻波腔和环形腔SRO输出的信号光、闲频光功率随抽运光功率的变化曲线。理论计算中所用的实验参数为:deff=15.9 pm·V-1ε0=8.854×10-12 A·s·(V·m)-1c=3.0×108 m·s-1Tss=Trs=2.5%,Vss=1.5%,Vrs=2.1%,λp=1.06 μm, λs=1.553 μm λi=3.378 μm,np=2.15,ns=2.13,ni=2.08。可以看出,在现有的抽运光功率下,环形腔SRO输出光功率的实测值和理论预测基本一致。当抽运光功率小于15 W时,驻波腔SRO输出光功率的实测值和理论预测基本一致;但当抽运光功率大于15 W时,驻波腔SRO输出光功率的实测值随抽运光功率的增大而减小,与理论预测结果的偏差较大。根据式(1)可知,当非线性晶体的长度及晶体内信号光的腰斑、折射率保持不变时,非线性晶体的热透镜效应与内腔共振的信号光功率有关。当抽运光功率为15 W时,驻波腔SRO内共振的信号光功率为260 W,此时非线性晶体的热透镜焦距为14 mm,对应的驻波腔SRO的稳定性参数为0.98。继续增加抽运光功率,驻波腔SRO的稳定性参数将大于1,SRO不能稳定运转,导致SRO输出功率不再继续增加。当抽运光功率为25 W时,环形腔SRO内共振的信号光功率为370 W,此时非线性晶体的热透镜焦距为10 mm,环形腔SRO仍可以稳定运转。因此,在整个抽运光调节范围内,环形腔SRO输出光功率的实测值随抽运光功率的增大而增大。由图6所示的SRO输出功率特性曲线可以看出:驻波腔SRO的阈值抽运功率低于环形腔SRO的阈值抽运功率;当抽运光功率小于15 W时,驻波腔SRO的输出功率特性要优于环形腔SRO的输出功率特性;但当抽运光功率大于15 W时,环形腔SRO的输出功率特性要优于驻波腔SRO的输出功率特性。为获得更高的信号光和闲频光输出功率,环形腔SRO是比较好的选择。

图 6. SRO输出信号光和闲频光的功率随抽运光功率的变化(点为实验数据,线为理论预测结果)

Fig. 6. Output power of signal and idler light from SRO versus pump power (point is experimental data and curve is theoretical prediction result)

下载图片 查看所有图片

通过控制SRO腔内MgO∶PPLN晶体的温度可以获得波长可调谐的信号光和闲频光输出。当MgO∶PPLN晶体的温度从30 ℃调节到65 ℃时,SRO输出的信号光波长可从1550.03 nm调谐到1561.38 nm,调谐范围达13.35 nm,对应的闲频光波长可从3394.7 nm调谐到3340.13 nm,调谐范围达54.57 nm。此外,由于红外激光的光束质量对其应用具有重要的影响,当MgO∶PPLN晶体的温度为40 ℃时,SRO输出的信号光和闲频光波长分别为1.553 μm和3.378 μm。在上述SRO运转条件下,利用光束质量分析仪测量了信号光的光束质量。实测的驻波腔SRO输出的信号光在水平方向上的光束质量因子Mx2=1.23,在垂直方向上的光束质量因子My2=1.12。环形腔SRO输出的信号光在水平方向上的光束质量因子Mx2=1.31,在垂直方向上的光束质量因子My2=1.13。由于环形腔SRO中的振荡激光相对于腔镜有一定的入射角,故输出信号光在水平方向上的光束质量因子略大于驻波腔SRO输出信号光的光束质量因子;环形腔和驻波腔SRO输出的信号光在垂直方向上的光束质量因子基本相同。由于光束质量分析仪的波长测量范围为1.44~1.60 μm,实验中没有分析测量闲频光的光束质量。

当抽运光功率为14 W时,利用自由光谱区范围为150 MHz、精细度为380的分析腔以及数字示波器测量记录了SRO输出信号光的线宽。实测的驻波腔和环形腔SRO输出信号光的线宽分别为0.58 MHz和0.43 MHz,该测量值受到分析腔分辨率的限制。根据信号光的线宽以及信号光和闲频光的波长可以估算得到驻波腔和环形腔SRO输出闲频光的线宽分别小于2.74 MHz和2.03 MHz。可以看出,环形腔SRO输出下转换光的线宽优于驻波腔SRO输出的下转换光的线宽。

为进一步研究SRO输出激光的稳定性,利用功率计测量了信号光和闲频光的长期功率波动,并用波长计测量了信号光的长期频率漂移(由于波长计的限制,闲频光的频率无法直接测量)。当MgO∶PPLN晶体的温度为40 ℃,抽运光功率分别为13.5 W和15.0 W时,驻波腔和环形腔SRO输出的信号光和闲频光功率均分别为5.0 W和2.0 W。图7为实测的2 h内信号光和闲频光的功率随时间的变化曲线,驻波腔SRO输出信号光和闲频光的功率波动分别优于±2.76%和±2.53%,环形腔SRO输出信号光和闲频光的功率波动分别优于±1.24%和±1.19%。

图 7. SRO自由运转时信号光和闲频光的功率随时间的变化。(a)驻波腔SRO;(b)环形腔SRO

Fig. 7. Power of signal and idler light versus time when SRO is free running. (a) Standing wave cavity SRO; (b) ring cavity SRO

下载图片 查看所有图片

波长计测量记录的2 h内驻波腔和环形腔SRO输出信号光的长期频率漂移如图8所示,分别优于±40 MHz和±28 MHz。可以看出,在SRO输出信号光和闲频光功率相同的情况下,环形腔SRO输出激光的功率和频率稳定性均优于驻波腔SRO。

图 8. SRO自由运转时信号光的频率漂移曲线。(a)驻波腔SRO;(b)环形腔SRO

Fig. 8. Frequency drift curve of signal light when SRO is free running. (a) Standing wave cavity SRO; (b) ring cavity SRO

下载图片 查看所有图片

最后实验研究了在高功率抽运条件下环形腔SRO的输出特性。当MgO∶PPLN晶体温度为40 ℃、抽运光功率为25.0 W时,环形腔SRO输出的信号光和闲频光功率分别为8.1 W和3.6 W。图9(a)、(b)分别为实测的2 h内信号光、闲频光的功率随时间的变化曲线和信号光的长期频率漂移曲线。信号光和闲频光的功率波动分别优于±1.91%和±1.88%,信号光的频率漂移优于±48 MHz。

图 9. 环形腔SRO自由运转时信号光和闲频光的功率以及信号光的频率随时间的变化曲线。(a)信号光和闲频光的功率随时间的变化;(b)信号光的频率随时间的变化

Fig. 9. Output power of signal and idler light and frequency of signal light versus time when ring cavity SRO is free running. (a) Power of signal and idler light versus time; (b) frequency of signal light versus time

下载图片 查看所有图片

5 结论

为了获得稳定运转的高功率红外激光输出,在高抽运功率下研究了SRO的腔型对其输出特性的影响。首先从理论上分析了驻波腔和环形腔结构下SRO腔长以及非线性晶体的热透镜效应对谐振腔稳定性的影响,发现环形腔SRO在谐振腔参数变化较大的范围内均可稳定运转。进一步理论分析了SRO的阈值抽运功率以及输出激光功率随抽运光功率的变化规律。其次实验搭建了基于MgO∶PPLN晶体的两镜驻波腔和四镜环形腔SRO。当MgO∶PPLN晶体的温度从30 ℃调节到65 ℃时,SRO输出的信号光波长可从1550.03 nm调谐到1561.38 nm,对应的闲频光波长可从3394.7 nm调谐到3340.13 nm。驻波腔SRO的阈值抽运功率为3.2 W,当抽运光功率为14.2 W时,信号光和闲频光功率分别为5.2 W和2.2 W,光光转换效率为52.1%。当抽运光功率小于15 W时,驻波腔SRO输出光功率的实测值和理论预测基本一致;但当抽运光功率大于15 W时,驻波腔SRO输出光功率的实测值随抽运光功率的增大而减小,与理论预测偏差较大。这是由于随着抽运功率的增大,非线性晶体的热透镜效应导致驻波腔SRO不能稳定运转。环形腔SRO的阈值抽运功率为7.2 W,当抽运光功率为25 W时,信号光和闲频光功率分别为8.1 W和3.6 W,光光转换效率为46.8%。环形腔SRO输出光功率的实测值和理论预测基本一致。驻波腔SRO输出信号光和闲频光在2 h内的功率波动分别优于±2.76%和±2.53%,环形腔SRO输出信号光和闲频光在2 h内的功率波动分别优于±1.24%和±1.19%、信号光的长期频率漂移分别优于±40 MHz及±28 MHz。研究结果表明,为获得更高的信号光和闲频光输出功率及运转稳定性,环形腔SRO是比较好的选择。

参考文献

[1] Karstad K, Stefanov A, Wegmuller M, et al. Detection of mid-IR radiation by sum frequency generation for free space optical communication[J]. Optics and Lasers in Engineering, 2005, 43(3/4/5): 537-544.

[2] Peltola J, Vainio M, Hieta T, et al. High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator[J]. Optics Express, 2013, 21(8): 10240-10250.

[3] Siciliani de Cumis M, Viciani S, Borri S, et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring[J]. Optics Express, 2014, 22(23): 28222-28231.

[4] Pandey R, Dingari N C, Spegazzini N, et al. Emerging trends in optical sensing of glycemic markers for diabetes monitoring[J]. TrAC Trends in Analytical Chemistry, 2015, 64: 100-108.

[5] Goddard L L, Bank S R, Wistey M A, et al. Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers[J]. Journal of Applied Physics, 2005, 97(8): 083101.

[6] Shen D Y, Sahu J K, Clarkson W A. Highly efficient Er, Yb-doped fiber laser with 188 W free-running and >100 W tunable output power[J]. Optics Express, 2005, 13(13): 4916-4921.

[7] Taccheo S, Svelto C, Laporta P, et al. Experimental analysis and theoretical modeling of a diode-pumped Er∶Yb∶glass microchip laser[J]. Optics Letters, 1995, 20(8): 889-891.

[8] Hanna D C, Mussett S G, Pacheco M T T, et al. A synchronously pumped waveguide CH4 Raman laser at 1.54 μm[J]. Optics Communications, 1988, 65(4): 279-282.

[9] Liu C C, Guo X M, Bai Z L, et al. High-efficiency continuously tunable single-frequency doubly resonant optical parametric oscillator[J]. Applied Optics, 2011, 50(10): 1477-1481.

[10] Liu J L, Li Y M, Liu Q, et al. Continuous-wave, single-frequency intracavity singly resonant optical parametric oscillator at 1.5-μm wavelength[J]. Chinese Optics Letters, 2009, 7(3): 244-245.

[11] Liu J L, Liu Q, Li H, et al. Low noise, continuous-wave single-frequency 1.5-μm laser generated by a singly resonant optical parametric oscillator[J]. Chinese Physics B, 2011, 20(11): 114215.

[12] Lin S T, Lin Y Y, Huang Y C, et al. Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator[J]. Optics Letters, 2008, 33(20): 2338-2340.

[13] Bosenberg W R, Drobshoff A, Alexander J I, et al. 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator[J]. Optics Letters, 1996, 21(17): 1336-1338.

[14] Henderson A, Stafford R. Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source[J]. Optics Express, 2006, 14(2): 767-772.

[15] 姜洪波, 沈利沣, 赵志刚, 等. 连续波光参量振荡器最优转换效率的实验研究[J]. 中国激光, 2016, 43(10): 1001011.

    Jiang H B, Shen L F, Zhao Z G, et al. Optimal conversion efficiency of continuous-wave optical parametric oscillator[J]. Chinese Journal of Lasers, 2016, 43(10): 1001011.

[16] Bae I H, Do Lim S, Yoo J K, et al. Development of a mid-infrared CW optical parametric oscillator based on fan-out grating MgO∶PPLN pumped at 1064 nm[J]. Current Optics and Photonics, 2019, 3(1): 33-39.

[17] Wang K, Gao M Y, Yu S H, et al. A compact and high efficiency intracavity OPO based on periodically poled lithium niobate[J]. Scientific Reports, 2021, 11: 5079.

[18] 王海龙, 杨慧琦, 苏静, 等. 基于单共振光学参量振荡器实现近红外到中红外激光输出的实验研究[J]. 中国激光, 2022, 49(18): 1801005.

    Wang H L, Yang H Q, Su J, et al. Experimental study of near-infrared to mid-infrared laser output based on single resonant optical parametric oscillator[J]. Chinese Journal of Lasers, 2022, 49(18): 1801005.

[19] Vainio M, Peltola J, Persijn S, et al. Thermal effects in singly resonant continuous-wave optical parametric oscillators[J]. Applied Physics B, 2009, 94(3): 411-427.

[20] Guha S. Focusing dependence of the efficiency of a singly resonant optical parametric oscillator[J]. Applied Physics B, 1998, 66(6): 663-675.

聂丹丹, 戚蒙, 李渊骥, 冯晋霞, 张宽收. 高功率单共振光学参量振荡器的输出特性研究[J]. 中国激光, 2024, 51(8): 0808001. Dandan Nie, Meng Qi, Yuanji Li, Jinxia Feng, Kuanshou Zhang. Study on Output Characteristics of High-Power Singly Resonant Optical Parametric Oscillator[J]. Chinese Journal of Lasers, 2024, 51(8): 0808001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!