中国激光, 2022, 49 (8): 0802009, 网络出版: 2022-03-25   

不同热处理对SLM TC4组织性能及各向异性的影响 下载: 943次

Effect of Different Heat Treatments on Microstructure, Properties, and Anisotropy of SLM TC4
作者单位
1 西安交通大学金属材料强度国家重点实验室,陕西 西安 710049
2 西安交通大学机械制造系统工程国家重点实验室,陕西 西安 710054
摘要
选区激光熔化(SLM)成形的TC4样件强度高、塑性差、各向异性明显。对SLM TC4成形件进行固溶时效、循环退火、循环球化退火+固溶时效三种热处理,采用光学显微镜、扫描电子显微镜、拉伸试验机对热处理所得成形件进行组织观察和性能测试。研究表明SLM TC4成形件微观组织由马氏体α′和马氏体α″组成,强度为1220 MPa左右,延伸率最高达13%;TC4成形件经热处理后板条α相粗化,有等轴α相产生,板条状α相长宽比降为5左右,固溶时效处理和循环球化退火+固溶时效处理的TC4成形件组织中产生二次α相;先950 ℃固溶1 h,之后550 ℃保温4 h,此条件下所得成形件的综合力学性能最好,其抗拉强度达到957.9 MPa,延伸率为17.6%,且所有拉伸性能指标的各向异性小于1.2%;循环球化退火+固溶时效处理的样件塑性很高,延伸率达18.3%,同时强度的各向异性不超过2%,固溶时效与循环球化退火+固溶时效处理后力学性能超过国家锻件标准。经过循环退火处理的TC4成形件强度损失较大,但塑性与另外两种热处理工艺相差不大。
Abstract
Objective

Ti-6Al-4V(TC4) titanium alloy exhibits impressive characteristics, including excellent corrosion resistance, high specific strength, and yield ratio, and thus, widely used in several fields, such as aerospace, navigation, and biomedical industries. Selective laser melting (SLM), a common method for manufacturing metal alloys, has multiple advantages, such as short production time, low cost, high integration, and high precision. Therefore, SLM is preferred for the fabrication of TC4 alloys with high density and good mechanical properties. However, the molten pool of SLM undergoes rapid melting and solidification under high temperature gradient. The microstructure of SLM TC4 is mainly composed of β columnar crystals, imparting poor plasticity and obvious anisotropy to the samples. Therefore, the deposited samples fail to meet the standard of commercial engineering and the simulation requirements of the titanium alloy. In this study, the TC4 samples prepared by SLM were heat-treated under three different conditions of solution aging, cyclic annealing, and cyclic spheroidizing annealing with solution aging. The effects of the three heat treatments on the microstructures and mechanical properties of the deposited TC4 were investigated with an optical microscope, a scanning electron microscope, and a tensile strength testing machine. The mechanisms of change in the microstructure and anisotropy during the three heat treatments are analyzed, providing a research basis for the application of TC4 in the aerospace field.

Methods

In our study, TC4 alloy powder with the particle size of 15-65 μm was used along with the rolled TC4 substrate. Before the experiment, the powder was placed in an oven and dried at 120 °C for 24 h to remove the moisture from the powder. The formation process and heat treatment were performed in the argon gas atmosphere. The size of the horizontal sample was 45 mm×8 mm×8 mm, while that of the vertical specimen was Φ8 mm×45 mm. According to the national standard GB/T228.1-2010, the samples were processed into standard tensile specimens and subjected to the tensile strength test at room temperature. Later, the samples were ground and polished, and the polished surface was corroded with Kroll reagent [V(HF)∶V(HNO3)∶V(H2O)=1∶3∶50 ]for 5 s. KEYENCE VH-600 optical microscope and TESCAN MIRA 3 LMH field emission scanning electron microscope were used to observe the microstructure and fracture.

Results and Discussions

The microstructure study showed that the substructure of SLM TC4 mainly comprised of martensite α′ and α″. The aspect ratio of martensite was greater than 20, and the dislocations and stresses produced by rapid heating and cooling provided sites for the nucleation of martensite. Post HM1[950 ℃/1 h/ air cooling (AC)+ 550 ℃/4 h/ AC] heat treatment, a bimodal microstructure was observed for SLM TC4 with the aspect ratio of lath α phase being about seven. During the heat preservation at 950°C, martensite α′ transformed into the lath α phase by downhill diffusion, the grain boundary α truncated when lath α phase grew, β phase nucleated and grew preferentially at the grain boundary, and the grain boundary broke under the combined influence of the above factors. During the aging process, small strips of secondary α phase precipitated from the metastable β phase. After HM2[(920 ℃×5 min+ 700 ℃×10 min)×5 / AC] heat treatment, the β phase in the microstructure of TC4 almost completely transformed into lath and equiaxed α phase, with the aspect ratio of the lath α phase being about 4, and the transformation mainly occurred as α′+ α″→α+ β. The spheroidization is mainly caused by thermal grooving and boundary splitting mechanisms. After five cycles, the volume fraction of α phase and the degree of spheroidization increased. After HM3[(920 ℃×10 min+ 800 ℃×30 min-550 ℃)×4/ furnace cooling (FC)+ 920 ℃×1 h/ AC+ 550 ℃×4 h/ AC) ]heat treatment, the microstructure of SLM TC4 mainly composed of lath α phase, equiaxed α phase, and net basket-like secondary precipitated α phase. The Burgers orientation relationship was satisfied during the phase change process. Due to the long heating time of cyclic spheroidizing annealing, the grain strength decreased more severely, and the subsequent solution aging made up for the strength loss during the cycle annealing process (Figs.3-4). As per the tensile strength test results, the tensile strength and the yield strength of SLM deposited TC4 were obtained as 1223.0 and 1054.2 MPa, respectively. The grain boundary hindered the movement of dislocations, therefore, the deposited sample exhibited high strength. After HM1 heat treatment, the tensile and the yield strengths of the TC4 depositions were 957.5 and 865.4 MPa, respectively, and the elongation was approximately 17%. Among the three heat treatments, the highest elongation of the deposited TC4 was observed after HM3 heat treatment, reaching up to 18.4%. After the heat treatment, the grain boundary α phase transformed into a continuous equiaxed α phase, which weakened the crack resistance, so that the strength decreased and elongation increased (Table 3). Analyzing the anisotropy data of the different mechanical properties of the deposited TC4 in the four states(As-builted、HM1、HM2、HM3), the anisotropy of the elongation and the reduction of the TC4 deposition area was relatively high (12.21% and 5.63%, respectively). (Figs.5-6). The anisotropy of tensile strength and yield strength of TC4 after heat treatment of HM1, HM2 and HM3 is less than 2%, and the anisotropy of elongation and area shrinkage decreases compared with that in the deposited state.

Conclusions

The deposited microstructure of SLM TC4 constitutes coarse β columnar crystals with martensite α′ and α″ as the intragranular substructures. The microstructure of SLM TC4 after solution aging heat treatment is bimodal, and a secondary α phase is generated during the aging process. During the cyclic annealing process, parts of the grain boundary α phase and lath α phase are broken to form an equiaxed α phase. After the cyclic spheroidizing annealing and solution aging treatment, the microstructure of the sample is mainly composed of the lath α phase, equiaxed α phase, and secondary α phase; the volume fraction of the equiaxed α phase is relatively high. The standard deviation of the mechanical property data of SLM TC4 is generally large, which is significantly reduced after the heat treatment. The strengths of the samples treated either solely by solution aging or a combination of cyclic spheroidizing annealing and solution aging are roughly equivalent. The sample plasticity obtained by the combined cyclic spheroidizing annealing and solution aging is better than that obtained by solution aging alone. After the heat treatment methods, the mechanical properties of the samples exceed the national forging standard. The plastic anisotropy of SLM TC4 depositions is high. However, the three heat treatment processes significantly reduce the plastic anisotropy. Among these processes, the solution aging treatment provides the deposited TC4 with the lowest anisotropy of the mechanical properties. SLM TC4 depositions have mixed fracture morphology, while the deposited TC4 after heat treatment shows a typical ductile fracture.

1 引言

TC4具有比强度高、耐蚀性好和耐热性高等特点,被广泛应用于航空航天领域,是航空发动机风扇、压气机轮盘、叶片和起落架等重要结构件的首选材料之一[1-2]。但是传统钛合金加工难度大、周期长、材料利用率低,使用钛合金结构件的成本较高,阻碍了钛合金的发展。选区激光熔化(SLM)技术具有成形快、成本低、集成化高、近净成形等优点,通过系统自带的切片软件对模型切片,运用高能量激光束逐层熔化合金粉末,最终累加成三维零件,材料利用率高,可以直接制备出力学性能好、致密度高的零件[3-5]。但SLM的熔池具有快热快冷、温度梯度高的特点,使得SLM TC4微观组织产生粗大的β柱状晶,柱状晶组织使得成形件具有明显的各向异性。断裂韧性、电导率、弹性模量等很多性能都具有方向性,各向异性对具备方向性性能的工程使用和仿真带来了很大困难,限制了钛合金在航天领域的应用[6-8]

调控TC4合金力学性能及各向异性的方法主要有三种:一是通过变质处理改善组织形貌,提供异质形核来细化晶粒,常见的加入合金元素有硼(B)和铁(Fe),硼元素可以细化合金组织,在晶界或相界产生TiB,含量越高,细化效果越明显,但硼含量过高会使塑性下降,硼含量在0.05%时TC4综合力学性能最好[9-10];Fe的加入使TC4中相的数量和大小略有变化,α相容易形成更窄的片状,体积分数降低,β相的宽度和相分数也相应增加。通过增强晶格畸变和振动,从而提高杨氏模量和断裂韧性[11]。二是通过机械冲击、微锻造细化晶粒并降低各向异性,在增材制造的同时对成形层表面施加超声冲锻或振动,通过形成机械变形层来限制β柱状晶生长,从而改善各向异性。但此方法成本高、生产效率低[12]。三是通过特定热处理来控制组织并降低各向异性。Sabban等[13]通过热处理将SLM TC4合金的组织转变为主要由球状α相组成的双态组织,微观组织为双态组织的TC4合金具有更高的综合力学性能,通过在β相变温度附近但低于β相变温度进行重复热循环来形成球状α相,可以在不施加塑性变形的情况下获得双态组织,同时提出一种解释形成球状α相的新球状化机制。北京航空航天大学袁经纬等[14]分析了激光增材制造TC4合金在不同热处理状态下试样的电化学及室温压缩蠕变性能,结果表明,双重退火处理会显著减小增材制造TC4钛合金中α板条的长宽比和尺寸,而固溶时效可使α板条长宽比增大,尺寸减小,从而提高材料耐蚀性、屈服极限以及抗压缩蠕变性能。Wang等[15-17]将SLM TC4合金分别在810~990 ℃下保温2 h空冷(AC),发现随着正火温度的升高,初生α-Ti相的长宽比和含量逐渐降低,在930 ℃和990 ℃正火时,板条间和晶粒内都有β-Ti相生成,当正火温度为990 ℃时,获得最佳的综合力学性能。

国内外有很多学者对SLM TC4的力学性能进行研究,但对成形件的各向异性和调控柱状晶组织的研究不够系统和全面。热处理可以有效降低TC4合金的各向异性,提高其综合力学性能[18-20]。本文设计了三种不同热处理工艺,通过对热处理后成形件的力学性能、微观组织、各向异性进行分析,从而获得可以有效降低SLM TC4各向异性,同时其塑韧性匹配良好的热处理工艺,为SLM TC4钛合金在航天领域的应用提供研究基础。

2 实验材料及方法

SLM TC4实验成形件在西安交通大学机械制造系统国家重点实验室自主研发的SLM-500A型激光熔化沉积成形系统上进行。本实验所用粉末为TC4合金粉末,成分如表1所示,粉末粒径为15~65 μm,基体使用TC4轧制基板。实验前先将粉末置于干燥箱中,在120 ℃下干燥24 h,去除粉末中的水分,提高样件的成形质量和致密度。

表 1. TC4粉末具体化学成分

Table 1. Chemical composition of TC4 powder

ElementAlVFeCNHOTi
Mass fraction /%6.013.920.1640.0050.0020.0010.072Bal.

查看所有表

表 2. SLM TC4合金热处理工艺

Table 2. Heat treatment processes of SLM TC4 alloy

No.Heat treatment processes
SLMAs-built
HM1TC4 samples are first air cooled after solution treatment at 950 ℃ for 1 h, and then air is cooled after aging at 550 ℃ for 4 h.
HM2TC4 samples are heated to 920 ℃ for 5 min, then cooled to 700 ℃ for 10 min in the furnace, which is repeated five times and then samples are air cooled.
HM3TC4 samples are kept at 920 ℃ for 10 min, cooled slowly to 800 ℃ and kept for 30 min in the furnace. When the temperature is 550 ℃,samples are immediately heated to 920 ℃. The whole process is repeated for 4 times and then samples are cooled in the furnace. At last the solution heat treating is performed at 920 ℃ for 1 h and aging treatment is performed at 550 ℃ for 4 h.

查看所有表

在成形过程中使用99.9%高纯氩气防止样件在打印过程中氧化。影响SLM TC4成形件性能的成形工艺参数主要有激光功率、扫描速度、扫描间距和单层提升量,对以上4个工艺参数设计四因素四水平的正交实验,通过阿基米德排水法确定成形件的致密度,当激光功率为280 W、填充扫描速度为1200 mm/s、扫描间距为0.14 mm、提升量为0.03 mm时,其成形件致密度最高,可以达到99.76%。外轮廓扫描速度为800 mm/s,扫描功率为280 W。光斑直径为0.043 mm,工作室氧体积分数≤1.3×10-3,10 h后氧体积分数≤3×10-4,填充角度为67°。

水平试样和竖直试样各成形20个,水平试样尺寸为45 mm×8 mm×8 mm,竖直试样尺寸为Φ8 mm×45 mm,成形方式如图1所示,箭头所指方向为沉积方向。实验共分为四组,每组5个水平试样,5个竖直试样,热处理工艺如表2所示。

图 1. SLM TC4样件成形方式及尺寸示意图。(a)水平成形示意图;(b)竖直成形示意图;(c)水平成形实物图;(d)竖直成形实物图

Fig. 1. Schematic diagram of SLM TC4 sample forming method and size. (a) Schematic of horizontal specimen;(b) schematic of vertical specimen; (c) physical drawing of horizontal forming; (d) physical drawing of vertical forming

下载图片 查看所有图片

SLM表示沉积态TC4样件。HM1表示成形件先在950 ℃下固溶1 h,之后在550 ℃下时效4 h后空冷。HM2表示成形件加热至920 ℃保温5 min,后冷却至700 ℃保温10 min,如此循环5次后空冷。HM3表示先在920 ℃下保温10 min,之后冷却至800 ℃,之后降温到550 ℃后立即升温到920 ℃,重复循环4次后炉冷(FC),之后进行920 ℃固溶1 h,550 ℃时效4 h空冷。三种热处理中的升温速度为10 ℃/min,降温速度为5 ℃/min。

固溶时效是TC4锻件常用的热处理工艺。固溶时效可以减少TC4锻件中的连续晶界α相,从而降低其各向异性,固溶处理后生成马氏体α′相和α″相或一定量的亚稳定β相,时效处理过程中亚稳定相按一定方式分解,产生强化效果,因此HM1采用固溶时效热处理工艺。循环退火过程中伴随着α、β相的多次转变,可以降低α相的长宽比,进而降低其各向异性,因此HM2采用循环退火的热处理工艺。通过在较低温度下保温和缓慢炉冷,希望能够获得尺寸均匀的晶粒组织。但长时间的加热会使α相粗化,因此希望通过固溶时效在组织均匀的前提下细化晶粒,以达到在降低TC4样件各向异性的同时仍保留较高强度,因此HM3采用循环球化退火+固溶时效热处理工艺。

按照国家标准GB/T228.1-2010将样件加工成标准拉伸试样,并进行室温拉伸测试,选取力学性能最接近平均值的拉伸试样进行线切割,完成之后进行制样抛光。用Kroll试剂[V(HF)∶V(HNO3)∶V(H2O)=1∶3∶50]对抛光面进行腐蚀,腐蚀时间为5 s,分别用水和酒精清洗试样附着物。采用低倍的光学显微镜(型号为KEYENCEVH-600)观察沉积态试样β柱状晶及晶界,采用高倍扫描电子显微镜(型号为TESCAN MIRA3LMH)观察β晶内亚结构,利用Image J染色处理对晶粒进行统计分析。

3 实验数据分析与讨论

3.1 沉积态与不同热处理TC4微观组织分析

图2是SLM TC4沉积态试样平行于沉积方向(纵截面,SLM-V)与垂直于沉积方向(横截面,SLM-H)的宏观组织形态。如图2(a)所示,SLM TC4沉积态合金纵截面为穿过多个熔覆层基本垂直熔覆层生长的粗大柱状晶。在沉积过程中,熔池沿沉积方向的温度梯度很大,同时在熔覆下一层时会使上一凝固层上部分再次熔化,熔覆层之间具有良好的润湿性,凝固过程中不存在形核势垒,同时TC4合金中β相的自扩散系数较大,晶粒生长激活能较小,从而使晶粒进行外延生长。柱状晶内的α板条存在择优取向,因此组织图呈现明暗交替的现象。图2(b)为SLM TC4横截面,横截面呈现等轴晶形态,晶粒分布较均匀[21]

图 2. SLM TC4成形件宏观形貌。(a)SLM-V;(b)SLM-H

Fig. 2. Macro morphology of SLM TC4. (a) SLM-V; (b) SLM-H

下载图片 查看所有图片

图3是SLM TC4沉积态及不同热处理工艺低倍微观组织图。图3(a)是SLM TC4沉积态纵截面和横截面放大100倍的微观组织形貌,纵截面组织为柱状晶形貌,晶界连续。从横纵截面柱状晶图选取20个柱状晶进行统计,取平均值得出β柱状晶的宽度为200~400 μm。图3(b)、(c)、(d)分别是成形件经过HM1、HM2、HM3热处理后放大200倍的微观组织,热处理后,原始β晶界破碎为晶界α相,微观组织无明显取向,晶界处有新的晶粒形核长大。HM1和HM3最后都进行了固溶时效处理,两者组织类型相似,部分板条α相断裂,晶界处产生少量等轴α相(等轴α相是指在各方向上尺寸相差较小的α晶粒)。图3(c)中有较多晶界断裂和溶解,因此经过HM2热处理后β相几乎完全转变为板条α相。

图 3. SLM TC4沉积态及不同热处理工艺的微观组织。(a)沉积态;(b)HM1;(c)HM2;(d)HM3

Fig. 3. Images of low-magnification microstructure of SLM TC4 deposited state and different heat treatment processes. (a) As-deposited; (b) HM1; (c) HM2; (d) HM3

下载图片 查看所有图片

图4是SLM TC4沉积态及三种热处理工艺下的微观组织图,从图4(a)可以看出β柱状晶的亚结构主要由马氏体α′相和马氏体α″相组成。对马氏体α′相和马氏体α″相的宽度进行统计并取平均值,得出α′相宽度约为3 μm,α″相宽度约为0.5 μm。沉积过程中,抬升量较小,随着沉积层的增加,试样绝大部分熔覆层经历多次加热冷却。由于SLM快热快冷的特性,部分位错和残留β相被保留和继承,这些位错和残余应力为马氏体提供了优先形核位点,提高了形核速率,进而得到较为细化的马氏体组织。α′相为六方晶格,α″相为斜方晶格,α″相所固溶的金属元素含量更高,故在发生马氏体转变时开始的温度更低,因此α″相的组织更细[6,21-22]图4(b)为SLM TC4经过HM1热处理的微观组织图,微观组织为双态组织,在β相转变基体上分布着等轴α相,部分板条状初生α相(从α-β相区上部加热保留下来的α相)保留;其中板条α相宽度约为4 μm,长宽比值约为7,等轴α相尺寸约为4 μm。β相的相变温度为995 ℃左右,HM1的固溶温度略低于β相的相变温度,可以在进行相转变的同时防止β晶粒快速长大。在950 ℃保温过程中,马氏体α′相通过下坡扩散转变为板条α相,板条α相长大的同时会截断晶界α相;V元素在马氏体α′相的晶界处偏聚,V元素为β相稳定元素,因此β相优先在此形核长大;同时位错发生重排形成平面位错阵列,在保温过程中逐渐形成亚晶界,这些亚晶界的存在会使板条α相发生断裂,在以上因素的综合影响下晶界破裂[19]。部分板条α相和晶界α相断裂后形成等轴α相,部分V元素偏聚的β相在快冷下保留至室温,因此冷却后得到(α+β)相组织。后续时效温度较低,时间较长,有细小条状二次α相从亚稳β相中析出,因此最终的组织形貌为双态组织[23-25]图4(c)是SLM TC4经过HM2热处理后的微观组织图,可以看出,β相几乎全部转变为板条α相和等轴α相,板条α相之间有明显间隙,板条α相粗化碎裂,部分碎晶长大。板条α相的尺寸为5 μm,长宽比值约为4。板条α相主要通过热开槽和边界分裂机制转变为等轴α相,在升温和920 ℃保温过程中,主要发生α′+α″→α+β转变,β相为主体相,主要在α相的晶界处形成。此时亚晶界与α/β界面相交,使板条α相分离的同时产生凹槽,β相沿凹槽生长,晶粒受到压应力,在各因素的综合作用下,板条α相碎裂,分为几个独立部分。在降温和700 ℃保温过程中,主要发生β→α转变,α相为主体相,板条α相厚度增加,之前破碎的晶粒的等轴化程度增加。由于热处理的温度低于β相转变温度,球化的效率较低。经过5次循环,更多的板条α相断裂,等轴α相体积分数提高[13]图4(d)是SLM TC4经过HM4热处理后的微观组织图,微观组织主要由板条α相、等轴α相以及网篮状二次析出α相(通过急冷过程保留到室温的亚稳β相在时效过程中进行分解产生的呈现网篮形状的α相)组成,其中板条α相平均尺寸为3 μm,长宽比值约为5,等轴α相尺寸为2.5 μm。利用Image J染色处理对等轴α相的比例进行统计,求平均值得出等轴α相占比约为32%;在920 ℃保温过程中,主要发生α′+α″→α+β转变,此时晶粒长大,长宽比值降低。800 ℃保温30 min,可以在提高晶粒球化程度的情况下减弱α相粗化,之后缓冷至550 ℃,主要发生β→α,转变时满足伯格斯取向关系{110}β∥{0001}α,〈111〉β∥112¯0α,在此方向上所得的织构强度最高。其中β相具有体心立方晶格(BCC)结构,α相具有密排六方晶格(HCP)结构。4次循环退火过程中发生反复相变,等轴α相的体积分数提高;之后炉冷,在β相尽可能多地转变为α相的同时得到较高的织构强度,由于加热时间很长,晶粒粗化较为严重。固溶处理后为空冷,快的冷却速率可以降低α相尺寸,之后进行时效,使得空冷产生的亚稳β相分解为二次α相,可以在改善晶粒尺寸的情况下弥补强度损失。

图 4. SLM TC4 沉积态及不同热处理工艺下微观组织SEM图。(a)沉积态;(b)HM1; (c)HM2; (d)HM3

Fig. 4. SEM images of low-magnification microstructure of SLM TC4 deposited state and different heat treatment processes. (a) As-deposited; (b) HM1; (c) HM2; (d) HM3

下载图片 查看所有图片

3.2 不同热处理TC4力学性能分析

表3为不同状态下SLM TC4合金拉伸试样力学性能具体实验数据,其中H表示水平试样,V表示竖直试样。可以看出SLM TC4沉积态抗拉强度和屈服强度可达1223 MPa(水平试样和竖直试样的平均值)和1054.2 MPa,SLM-H成形件强度的标准差高于19,SLM-V成形件强度的标准差高于8,经过热处理后大部分成形件强度的标准差在4左右,相对于沉积态大幅降低。SLM-H成形件的拉伸方向与柱状晶晶界相互垂直,晶界和亚晶界都会对位错的运动产生阻碍,对于SLM-V成形件来说,拉伸应力方向平行于柱状晶方向,因此柱状晶的晶界对SLM-V成形件力学性能影响相对较小,偶然误差和样件成形参数对晶界的影响较大,晶界对水平方向的力学性能影响更高,因此SLM-H成形件力学性能和其标准差总体大于SLM-V。结合微观组织图对力学性能分析,SLM TC4微观组织为粗大β柱状晶,亚结构主要为马氏体α′相和马氏体α″相,α相尺寸越细,其强度越高[26]。沉积过程中升温速率较快,部分位错和残留β相被保留和继承,经过反复加热之后进行了累加,在马氏体形变的过程中也会有位错的形成,同时局部热输入产生的局部热效应会导致一定的局部应力和变形,因此晶内位错含量高,有位错塞积与残余压应力,晶界、残余应力会阻碍位错的滑移,因此其强度高,塑性差[21-22]

表 3. 不同状态下SLM TC4合金拉伸试样力学性能实验数据

Table 3. Mechanical properties of SLM TC4 alloy tensile specimens under different treatment conditions

TreatmentTensile directionUltimate tensile strength σb/MPaYield strength σs/MPaElongation /%Rate of reduction in area /%
SLMH1226.0±19.541048.2±19.1513.1±1.1642.6±1.85
V1220.0±8.081060.2±8.2111.5±1.8240.2±2.32
HM1H952.4±3.61862.4±3.2617.5±1.7949.2±1.17
V963.4±3.38868.4±7.0017.7±1.2148.8±1.94
HM2H883.8±4.92792.2±6.3118.8±1.5445.4±1.02
V893.4±7.94807.6±8.2117.4±1.5648.0±1.41
HM3H936.6±4.84848.6±3.2619.1±1.7747.0±2.97
V955.8±4.71865.6±2.9417.6±2.2748.4±1.02
GB/T 25137-201089582810.025.0

查看所有表

三种热处理中,HM1热处理后的成形件的强度最高,抗拉强度和屈服强度分别为957.5 MPa和865.4 MPa,延伸率约为17%。由图4(b)可知,经过HM1热处理的 TC4成形件的微观组织为双态组织,热处理过程中原有晶界破裂并在晶界附近产生等轴α相,双态组织中板条α相与等轴α相结合,使成形件具有较强的韧性;且双态组织具有较强的变形能力和高协调性,因此成形件的韧性较高。HM1热处理在高温下保温总时长最短,且未经过反复循环,因此晶粒粗化相对较小,时效过程中析出的二次α相对组织产生固溶强化,因此强度下降幅度较小,其综合力学性能最好[21-23]。HM3热处理后的成形件的延伸率最高,达到18.4%,成形件经过较长时间循环球化退火并炉冷,多次反复相变过程中产生的α相有充足的时间和能量形核长大,同时板条α相分离,相之间的相互阻碍作用降低,因此强度下降。炉冷使得β相到α相的转变程度提高,最后在时效过程中会产生二次α相再次强化,经过HM3处理的SLM TC4成形件晶粒尺寸均匀,等轴α相含量较高且尺寸较小,因此样件兼具一定的强度和塑性。HM2热处理后强度性能下降较大,但其塑性与HM1、HM3差别不大。循环过程中板条α相分离,晶粒间相互阻碍作用减弱,由于加热时间较长,二次相强化机制消失,内应力降低,因此强度损失较为严重。但是晶粒粗化、位错的减少又会制约其塑性的提升,因此经过HM2热处理后的成形件的塑性与另外两种热处理成形件的塑性指标相差不大。最后一列为GB/T 25137-2010国家标准中锻件TC4的力学性能达标要求,对比后得出:HM1、HM3热处理的力学性能均超过国家锻件标准,HM2的强度略低于国家锻件标准。

3.3 不同热处理TC4力学性能各向异性分析

对沉积态、HM1、HM2和HM3四种状态的力学性能进行各向异性计算分析,然后将各向异性结果以柱状图表示。各向异性的计算公式为ξχmaxχminχmax×100%式中,ξ代表各向异性,χmax代表水平或垂直样件中某项力学性能的最大值,χmin代表水平或垂直样件中某项力学性能的最小值。

图5为沉积态和三种热处理后SLM TC4成形件的力学性能的各向异性柱状图,可知SLM TC4成形件的抗拉强度和屈服强度的各向异性分别为0.42%、1.13%,延伸率和断面收缩率的各向异性较高,为12.21%和5.63%,β柱状晶晶界、晶体的晶格结构、α相集束大小可以使得沉积态SLM TC4成形件具有各向异性,SLM TC4中的晶格结构以HCP为主,虽然HCP结构对称性差,但是α'相变体和集束的取向随机,未观察到强烈的织构转变,因此晶体结构和α相集束大小对成形件的各向异性的影响较小。对沉积态各向异性影响最大的是柱状晶晶界,图6(a)、(b)分别为SLM-H和SLM-V中的β晶界的受力图,水平试样和竖直试样上的拉伸应力作用与晶界的方向不同,水平试样中β柱状晶的长晶界受到Ⅰ型张开拉伸,竖直试样中β柱状晶的短晶界和马氏体α′相晶界受到Ⅰ型张开拉伸,晶界是损伤优先积累的路径,晶界对裂纹的扩展起阻碍作用,因此沉积态SLM TC4力学性能的各向异性较大[27-28]。由图5可知,经过三种热处理后的SLM TC4成形件的抗拉强度和屈服强度的各向异性小于2%,与沉积态强度指标的各向异性相比变化不明显,但延伸率和断面收缩率的各向异性都有所下降。HM1热处理后的样件的延伸率和断面收缩率的各向异性相对于沉积态下降了11.08%和4.82%,HM2和HM3的延伸率的各向异性下降约5%。综合来说,固溶时效力学性能的各向异性最小(≤1.2%)。

图 5. 沉积态和不同热处理工艺下力学性能的各向异性柱状图

Fig. 5. Anisotropic histogram of microstructure in deposited state and different heat treatment processes

下载图片 查看所有图片

图 6. 不同方向晶界所受拉应力状态及裂纹扩展路径示意图。(a)SLM-H; (b)SLM-V; (c)沉积态和热处理后的裂纹扩展路径示意图

Fig. 6. Tensile stress state of grain boundaries in different directions and crack propagation path diagram. (a) SLM-H;(b) SLM-V; (c) schematic diagram of crack propagation pathin deposited state and after heat treatment

下载图片 查看所有图片

图6(c)为裂纹扩展路径的示意图,箭头所指的为裂纹扩展路径,热处理后,连续β柱状晶的晶界发生破碎,转变为连续的长宽比较低的α相,裂纹由穿晶扩展转变为沿晶扩展,热处理后晶界对裂纹扩展的阻碍作用减小,晶界对不同方向力学性能的影响减弱;同时马氏体α′相转变为等轴α相,长宽比大幅下降,此时水平试样和竖直试样的裂纹扩展都是沿α相晶界方向,因此其各向异性大幅下降。由于三种热处理工艺不同,对原始晶界的破坏程度和形成连续晶界α相的尺寸不同,因此三种热处理对各向异性的影响不尽相同,但都可以降低成形件延伸率和断面收缩率的各向异性[29]

3.4 拉伸断口分析

图7(a)、(d)分别是SLM-H、SLM-V的拉伸断口形貌,图7(b)、(e)分别是7(a)、(d)中圆圈标记处的微观形貌,图7(c)、(f)分别是7(a)、(d)中方块标记处的微观组织图。图7(a)断口呈杯锥状,银灰色,锥面垂直于应力方向,水平试样中心呈鹅毛绒状,边缘区相对比较光滑,呈现混合断口特征,裂纹从中间开始向边缘扩展试样中心,断口中心存在孔隙。图7(b)属于中心纤维区,主要组织为小而密的等轴韧窝。图7(c)主要由边缘韧窝组成,边缘韧窝呈抛物线状,尺寸比纤维区大,但深度较浅,具有明显取向。由图7(d)、(e)、(f)可知,SLM-V的边缘脆断区比较平整,有明显的解理台阶,为混合型断口。中心纤维区韧窝较深,边缘为等轴状韧窝,含有少量空洞,深度较浅,没有明显取向。水平样中心区的韧窝比竖直样更深,且边缘韧窝具有明显的取向,因此其水平试样拉伸过程中的变形量大于竖直试样,其延伸率大于竖直试样。

图 7. SLM TC4沉积态下试样拉伸断口形貌。(a)SLM-H(×80); (b)SLM-H(×2000); (c)SLM-H(×5000); (d)SLM-V(×80); (e)SLM-V(×2000); (f)SLM-V(×5000)

Fig. 7. Tensile fracture morphology of SLM TC4 in deposited state. (a) SLM-H(×80); (b) SLM-H(×2000); (c) SLM-H(×5000); (d) SLM-V (×80); (e) SLM-V(×2000); (f) SLM-V(×5000)

下载图片 查看所有图片

图8是SLM TC4试样经过三种热处理工艺处理后的拉伸断口形貌,断口都呈现韧性断口的形貌,颈缩现象比SLM TC4明显。从图8(b)、(d)可以看出,经过HM1热处理之后,中心纤维区等轴韧窝数量变多且深度增加,大韧窝之中生成形状不规则的小韧窝。由图8(e)、(f)、(g)、(h)可知,HM2-H和HM2-V断口宏观形貌差别很小,水平试样中心纤维区存在少量条形韧窝,韧窝内部有二次裂纹的产生,二次裂纹可以吸收部分能量,减小应力集中,从而提高其塑性,因此HM2-H试样的延伸率高于HM2-V。由图8(h)、(i)、(j)、(k)可知,HM3热处理后的试样断口部分呈现韧性断裂形貌,不同沉积方向的中心纤维区微观形貌无明显差异,大韧窝中包含有小韧窝,存在部分未长大孔洞,大部分空洞会在加载过程中连接长大,促进裂纹发展,进而形成韧窝。韧窝小而均匀,孔洞能减少裂纹的应力集中,因此HM3热处理后样件的塑性较高。

图 8. 不同热处理工艺的拉伸断口形貌图。(a)HM1-H(×80); (b)HM1-H(×2000); (c)HM1-V(×80); (d)HM1-V(×2000); (e)HM2-H(×80); (f)HM2-H(×2000); (g)HM2-V(×80); (h)HM2-V(×2000); (i)HM3-H(×80); (j)HM3-H(×2000); (k)HM3-V(×80); (l)HM3-V(×2000)

Fig. 8. Topography of the tensile fracture of different heat treatment processes. (a) HM1-H(×80); (b) HM1-H(×2000); (c) HM1-V(×80); (d) HM1-V(×2000); (e) HM2-H(×80); (f) HM2-H(×2000); (g) HM2-V(×80); (h) HM2-V(×2000); (i) HM3-H(×80); (j) HM3-H(×2000); (k) HM3-V(×80); (l) HM3-V(×2000)

下载图片 查看所有图片

4 结论

SLM TC4微观组织为粗大β柱状晶,晶粒内亚结构为马氏体α′相和马氏体α″相;SLM TC4经过固溶时效热处理后的组织为双态组织,时效过程中有二次α相产生;循环退火过程中部分晶界α相和板条α相破裂溶解形成等轴α相;经过循环球化退火+固溶时效处理后,试样微观组织主要由板条状α相、等轴α相以及二次析出α相组成,等轴α相占比32%左右,晶粒尺寸最为均匀。经过三种热处理后α相宽度和长宽比值都有大幅下降。

SLM TC4成形件力学性能数据标准差较大,经过热处理后明显降低;经过固溶时效和循环球化退火+固溶时效处理的样件强度指标较为接近,但是循环球化退火+固溶时效的塑性相对更好,其延伸率最高可达19%,两种热处理样件的力学性能指标均超过国家锻件标准。循环退火成形件加热时间长,晶粒粗化严重,且没有二次强化,循环退火成形件的强度指标下降最大。

连续的β相晶界对裂纹的扩展有阻碍作用,因此SLM TC4沉积态塑性指标的各向异性较高,其延伸率的各向异性达到13%;三种热处理工艺中,固溶时效处理后的成形件的力学性能的各向异性最低,总体各向异性小于1.2%。SLM TC4成形件的断口形貌为混合断口形貌,边缘韧窝深度较浅,热处理后的成形件的断口都为典型韧性断口,与SLM TC4相比其韧窝小而均匀,且深度较深,部分大韧窝之中有小韧窝出现。

参考文献

[1] 文艺, 姜涛, 邬冠华, 等. 3D打印两相钛合金组织性能研究现状[J]. 失效分析与预防, 2016, 11(1): 42-46.

    Wen Y, Jiang T, Wu G H, et al. Research status on microstructures and properties of two-phase titanium alloys by 3D printing[J]. Failure Analysis and Prevention, 2016, 11(1): 42-46.

[2] 张安峰, 李涤尘, 梁少端, 等. 高性能金属零件激光增材制造技术研究进展[J]. 航空制造技术, 2016, 59(22): 16-22.

    Zhang A F, Li D C, Liang S D, et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 2016, 59(22): 16-22.

[3] 杨德建, 刘仁洪. 大型复杂金属零件3D打印技术及研究进展[J]. 兵工自动化, 2017, 36(2): 8-12.

    Yang D J, Liu R H. Research development of 3D printing for large complex metal parts[J]. Ordnance Industry Automation, 2017, 36(2): 8-12.

[4] Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming[J]. Acta Materialia, 2017, 132: 82-95.

[5] 朱加雷, 王凯, 马桂殿, 等. TC4钛合金激光选区熔化成形性能研究[J]. 应用激光, 2017, 37(6): 793-800.

    Zhu J L, Wang K, Ma G D, et al. Study on TC4 titanium alloy selective laser melting forming mechanical properties[J]. Applied Laser, 2017, 37(6): 793-800.

[6] 文九巴. 金属材料学[M]. 北京:机械工业出版社,2011: 237-241.

    WenJ B. Metal materials[M]. Beijing: China Machine Press, 2011: 237-241.

[7] 陈洪荪. 金属的弹性各向异性[M]. 北京:冶金工业出版社,1996: 5-7.

    ChenH S. Elastic anisotropy of metals[M]. Beijing: Metallurgical Industry Press, 1996: 5-7.

[8] 罗祖道,李思简. 各向异性材料力学[M]. 上海:上海交通大学出版社,1994: 3-5.

    LuoZ D, LiS J. Mechanics of anisotropic materials[M]. Shanghai: Shanghai Jiao Tong University Press, 1994: 3-5.

[9] Chen F W, Gu Y L, Xu G L, et al. Improved fracture toughness by microalloying of Fe in Ti-6Al-4V[J]. Materials & Design, 2020, 185: 108251.

[10] 齐振佳, 张晓星, 王豫跃, 等. 硼对激光增材制造TC4微观组织及力学性能的影响[J]. 中国激光, 2020, 47(6): 0602002.

    Qi Z J, Zhang X X, Wang Y Y, et al. Effect of B on microstructure and tensile properties of laser additive manufactured TC4 alloy[J]. Chinese Journal of Lasers, 2020, 47(6): 0602002.

[11] 石磊, 雷力明, 付鑫, 等. Fe含量对激光立体成形TC4合金组织性能的影响[J]. 稀有金属材料与工程, 2020, 49(5): 1674-1680.

    Shi L, Lei L M, Fu X, et al. Effect of Fe content on the microstructure and tensile properties of TC4 alloy fabricated by laser solid forming[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1674-1680.

[12] 张金智, 张安峰, 王宏, 等. 微锻造激光熔覆沉积高性能TC4组织与各向异性[J]. 中国激光, 2019, 46(4): 0402009.

    Zhang J Z, Zhang A F, Wang H, et al. Microstructure and anisotropy of high performance TC4 obtained by micro forging laser cladding deposition[J]. Chinese Journal of Lasers, 2019, 46(4): 0402009.

[13] Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness[J]. Acta Materialia, 2019, 162: 239-254.

[14] 袁经纬, 李卓, 汤海波, 等. 热处理对激光增材制造TC4合金耐蚀性及室温压缩蠕变性能的影响[J]. 航空学报, 2021, 42(10): 478-485.

    Yuan J W, Li Z, Tang H B, et al. Effect of heat treatment on corrosion resistance and room temperature compression creep of LAMed TC4 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 478-485.

[15] Wang W, Xu X W, Ma R X, et al. The influence of heat treatment temperature on microstructures and mechanical properties of titanium alloy fabricated by laser melting deposition[J]. Materials, 2020, 13(18): 4087.

[16] Zhao Z Y, Li L, Bai P K, et al. The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting[J]. Materials, 2018, 11(8): 1318.

[17] Wang K H, Kopec M, Chang S P, et al. Enhanced formability and forming efficiency for two-phase titanium alloys by Fast light Alloys Stamping Technology (FAST)[J]. Materials & Design, 2020, 194: 108948.

[18] 张霜银, 林鑫, 陈静, 等. 热处理对激光成形TC4合金组织及性能的影响[J]. 稀有金属材料与工程, 2007, 36(7): 1263-1266.

    Zhang S Y, Lin X, Chen J, et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 2007, 36(7): 1263-1266.

[19] 赵庄. 激光立体成形TC4-DT合金晶内亚结构及强韧化调控[D]. 西安:西北工业大学,2018.

    ZhaoZ. Intracrystalline substructures control and strength-toughness optimization of laser solid formed TC4-DT alloy[D]. Xi'an: Northwestern Polytechnical University, 2018.

[20] 黄建国. TC4合金选区激光熔化(SLM)成形的微观组织及性能研究[D]. 南昌:南昌航空大学,2018.

    HuangJ G. Study of microstructure and properties of TC4 alloy by selective laser melting[D]. Nanchang: Nanchang Hangkong University, 2018.

[21] Yang J J, Yu H C, Yin J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108: 308-318.

[22] Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: a review[J]. Materials & Design, 2019, 164: 107552.

[23] 吴威, 庞玉华, 刘东, 等. TC4钛合金超厚壁管斜轧穿孔后卡现象及双态组织控制[J]. 热加工工艺, 2019, 48(19): 92-96.

    Wu W, Pang Y H, Liu D, et al. Control of rear-jamming and double-state microstructure of TC4 titanium alloy super-thick-walled tube in cross piercing[J]. Hot Working Technology, 2019, 48(19): 92-96.

[24] 王琨, 李艳青, 王雷, 等. 应变幅值对双态组织TC4钛合金疲劳断裂机制的影响[J]. 热加工工艺, 2018, 47(10): 86-89.

    Wang K, Li Y Q, Wang L, et al. Effect of strain amplitude on fatigue fracture mechanism of TC4 titanium alloy with duplex structure[J]. Hot Working Technology, 2018, 47(10): 86-89.

[25] 彭美旗, 程兴旺, 郑超, 等. 转变β区体积分数对双态组织TC4钛合金动态压缩性能及其绝热剪切敏感性的影响规律[J]. 稀有金属材料与工程, 2017, 46(8): 2227-2233.

    Peng M Q, Cheng X W, Zheng C, et al. Effects of volume fraction of transformed β matrix on dynamic mechanical properties and sensitivity of adiabatic shear banding in bimodal microstructures of TC4 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(8): 2227-2233.

[26] Akram J, Pal D, Stucker B. Establishing flow stress and elongation relationships as a function of microstructural features of Ti6Al4V alloy processed using SLM[J]. Designs, 2019, 3(2): 21.

[27] Tan X P, Kok Y H, Toh W Q, et al. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V[J]. Scientific Reports, 2016, 6: 26039.

[28] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320.

[29] Lu J X, Chang L, Wang J, et al. In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy[J]. Materials Science and Engineering: A, 2018, 712: 199-205.

窦振, 王豫跃, 张安峰, 吴梦杰, 王普强. 不同热处理对SLM TC4组织性能及各向异性的影响[J]. 中国激光, 2022, 49(8): 0802009. Zhen Dou, Yuyue Wang, Anfeng Zhang, Mengjie Wu, Puqiang Wang. Effect of Different Heat Treatments on Microstructure, Properties, and Anisotropy of SLM TC4[J]. Chinese Journal of Lasers, 2022, 49(8): 0802009.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!