人工晶体学报, 2023, 52 (11): 2024, 网络出版: 2023-12-05  

基于4,4’-偶氮苯二甲酸的金属-有机框架合成及其荧光性质

Synthesis and Fluorescent Properties of Metal-Organic Frameworks Based on 4,4’-Azobenzoic Acid
作者单位
1 西安理工大学应用化学系, 西安 710054
2 西安理工大学材料物理与化学系, 西安 710048
3 陕西省微生物研究所, 西安 710043
摘要
分别以吡嗪和4,4’-联吡啶为共配体, Cd2+、Zn2+与4,4’-偶氮苯二甲酸(H2(4,4’-azo))配位反应得到了两个金属-有机框架(MOFs)。X射线单晶衍射研究结果表明, 其结构中均不含共配体, 与之前报道的 [Cd(4,4’-azo)(H2O)]n(1)和[Zn(4,4’-azo)(H2O)2]n(2)的晶体结构一致。将共配体变为几何尺寸更长的1,3-二(四吡啶基)丙烷(bpp), 金属离子变为Co2+, 合成了一个共晶[H2(4,4’-azo)(bpp)]n(3), 其为单斜晶系, C2/c空间群, 晶胞参数: a=3.216 8(19) nm, b=0.475 5(3) nm, c=1.873 2(14) nm。用热重分析仪和荧光分光光度计分别研究了三个化合物的热稳定性和两个MOFs的发光性质。1和2都具有优异的热稳定性, 尤其是2的初始失重温度高达247 ℃。由于1是由4,4’-azo双齿配位两个Cd2+形成双核3D网络结构, 而2是4,4’-azo单齿配位Zn2+形成的1D “zig-zag”链, 两者的紫外光谱和荧光光谱不同。2除具有配体固有的荧光发射(359 nm)外, 由于Zn2+与4,4’-azo配位后产生的配体到金属的电荷跃迁(LMCT), 还在420 nm处新增一个增强的荧光发射峰。
Abstract
Using pyrazine and 4,4’-bipyrine as co-ligand, respectively, two metal-organic frameworks (MOFs) were synthesized by complexzation of Cd2+ and Zn2+ with 4,4’-azobenzoic acid (H2(4,4’-azo)). X-ray single crystal diffraction shows that their crystal structures are as same as those of the previously published [Cd(4,4’-azo)(H2O)]n (1) and [Zn(4,4’-azo)(H2O)2]n (2) where the co-ligands are not involved into the structures. Varying the co-ligand to 1,3-bi(tetrapyridyl)propane (bpp) with larger size and metal ions to Co2+, a co-crystal [H2(4,4’-azo)(bpp)]n (3) was isolated successfully, which is monoclinic, space group of C2/c with crystal cell parameters a=3.216 8(19) nm, b=0.475 5(3) nm and c=1.873 2(14) nm. The thermal stabilities of the three compounds were investigated by thermal gravimetric analyzer and the fluorescence of two MOFs were examined by fluorescence spectrometer, respectively. Both 1 and 2 display excellent thermal stabilities. Especially, 2 keeps stable up to 247 ℃. UV-Vis spectra and fluorescence spectra of 1 and 2 are different, which are ascribed to that 1 is a 3D network formed by 4,4’-azo bi-dentated coordinating with two Cd2+ whereas 2 is a 1D zig-zag chain constructed by 4,4’-azo mono-dentated coordinating with Zn2+. In addition to the ligand emission at 359 nm, 2 exhibits a new enhanced emission at 420 nm due to the ligand to metal charge transfer (LMCT) upon Zn2+ coordination with 4,4’-azo.
参考文献

[1] LI Y, KARIMI M, GONG Y N, et al. Integration of metal-organic frameworks and covalent organic frameworks: design, synthesis, and applications[J]. Matter, 2021, 4(7): 2230-2265.

[2] ABDELHAMEED R M, ABU-ELGHAIT M, EL-SHAHAT M. Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): enhancement the biological and visible-light photocatalytic activity[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104107.

[3] LIU S B, JIANG X H, WATERHOUSE G I N, et al. Construction of Z-scheme Titanium-MOF/plasmonic silver nanoparticle/NiFe layered double hydroxide photocatalysts with enhanced dye and antibiotic degradation activity under visible light[J]. Separation and Purification Technology, 2021, 278: 119525.

[4] KONDO M, OKUBO T, ASAMI A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(Pzdc)2(L)}n](Pzdc=pyrazine-2, 3-dicarboxylate; L=a pillar ligand)[J]. Angewandte Chemie International Edition, 1999, 38(1/2): 140-143.

[5] WANG F, BI Z Y, DING L F, et al. Large-scale computational screening of metal-organic frameworks for D2/H2 separation[J]. Chinese Journal of Chemical Engineering, 2023, 54: 323-330.

[6] GAN H J, WANG Z, LI H M, et al. CdSe QDs@UIO-66 composite with enhanced photocatalytic activity towards RhB degradation under visible-light irradiation[J]. RSC Advances, 2016, 6(7): 5192-5197.

[7] XU H Q, HU J H, WANG D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states[J]. Journal of the American Chemical Society, 2015, 137(42): 13440-13443.

[8] WU Z F, TAN B, VELASCO E, et al. Fluorescent in based MOFs showing “turn on” luminescence towards thiols and acting as a ratiometric fluorescence thermometer[J]. Journal of Materials Chemistry C, 2019, 7(10): 3049-3055.

[9] SIMON-YARZA T, MIELCAREK A, COUVREUR P, et al. Drug delivery: nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine [J]. Advanced Materials, 2018,478(2): 3378-3411.

[10] WANG H L, ZHU Q L, ZOU R Q, et al. Metal-organic frameworks for energy applications[J]. Chem, 2017, 2(1): 52-80.

[11] LI H L, EDDAOUDI M, O′KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.

[12] TAO J, TONG M L, SHI J X, et al. Blue photoluminescent zinc coordination polymers with supertetranuclear cores[J]. Chemical Communications, 2000(20): 2043-2044.

[13] LIN Z Z, JIANG F L, CHEN L A, et al. New 3-D chiral framework of indium with 1, 3, 5-benzenetricarboxylate[J]. Inorganic Chemistry, 2005, 44(1): 73-76.

[14] 徐中轩, 石明凤, 白旭玲, 等. 基于5-羟甲基间苯二甲酸和咪唑衍生物的半导体型Ni-MOFs的合成、晶体结构和光催化性质[J]. 无机化学学报, 2022, 38(9): 1799-1807.

[15] CHEN B L, MA S Q, HURTADO E J, et al. A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules[J]. Inorganic Chemistry, 2007, 46(21): 8490-8492.

[16] 李 娜. 柔性芳香羧酸与含氮配体构筑的配位聚合物的合成、结构及性质研究[D]. 西安: 西北大学, 2010.

[17] ZHAO J, PENG R F. Gas-solid two-phase flow synthesis equipment: a new method for continuous, large-scale preparation of metal-organic frameworks with No solvent[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15791-15795.

[18] KOWALIK M, MASTERNAK J, AKOMSKA I, et al. Structural insights into new Bi(III) coordination polymers with pyridine-2, 3-dicarboxylic acid: photoluminescence properties and anti-helicobacter pylori activity[J]. International Journal of Molecular Sciences, 2020, 21(22): 8696.

[19] DU J Q, DONG J L, XIE F, et al. Syntheses, structures, and properties of three mixed-ligand complexes based on 3, 6-bis(imidazole-1-yl)pyridazine[J]. Journal of Molecular Structure, 2019, 1175: 754-762.

[20] WU Q R, CHEN X L, HU H M, et al. Assembly of a novel Ag(I) supramolecular architecture constructed from flexible ligand containing asymmetrical tricarboxylate[J]. Inorganic Chemistry Communications, 2008, 11(1): 28-32.

[21] 张志力. 偶氮苯二甲酸和喹碘仿金属配位聚合物的合成、晶体结构及性质研究[D]. 桂林: 广西师范大学, 2007.

[22] 付 峰, 郭海康, 唐 龙, 等. 基于偶氮苯-4, 4’-二甲酸配体的锰(Ⅱ)配合物的合成、晶体结构及性质研究[J]. 无机化学学报, 2012, 28(12): 2638-2642.

[23] YANG S Y, HU J Y, LONG L S, et al. Crystallographic report: crystal structure of a two-dimensional coordination polymer: dizinc diterephthalate pyrazine dihydrate[J]. Applied Organometallic Chemistry, 2003, 17(10): 815-816.

[24] LUO F, FAN C B, LUO M B, et al. Photoswitching CO2capture and release in a photochromic diarylethene metal-organic framework[J]. Angewandte Chemie International Edition, 2014, 53(35): 9298-9301.

[25] ERIC RIORDAN J, BLAIR H S. Synthesis and characterization of inherently coloured azo polyamides[J]. Polymer, 1979, 20(2): 196-202.

[26] BOURHIS L J, DOLOMANOV O V, GILDEA R J, et al. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected[J]. Acta Crystallographica Section A, Foundations and Advances, 2015, 71(1): 59-75.

[27] EVANS O R, WANG Z Y, XIONG R G, et al. Nanoporous, interpenetrated metal-organic diamondoid networks[J]. Inorganic Chemistry, 1999, 38(12): 2969-2973.

[28] CHEN Z F, XIONG R G, ABRAHAMS B F, et al. An unprecedented six-fold anion-type chiral diamondoid-like eight-coordinate Cd(II) coordination polymer with a second-order nonlinear optical effect[J]. Journal of the Chemical Society, Dalton Transactions, 2001(17): 2453-2455.

[29] 石秀敏. 几种过渡金属有机配位化合物的光谱研究[D]. 长春: 吉林大学, 2010.

[30] WANG R G, QIAO Q A, TANG T D. Poly[aqua(4, 4’-diazenediyldibenzoato-κ4O, O′: O″, O′″)cadmium(II)]: a twofold interpenetrated three-dimensional coordination polymer of PtS topology[J]. Acta Crystallographica Section C Crystal Structure Communications, 2009, 65(10): m388-m390.

[31] LIU B, XU Q. Catena-Poly[diaquazinc(II)]-μ-trans-4,4’- diazenediyldibenzoato-k4O,O’: O’’,O’’’[J]. Acta Cryst, 2009, E65: m509.

[32] 高学喜, 牟 娟, 王文军, 等. 紫外光辐照对偶氮苯光谱特性的影响[J]. 发光学报, 2009, 30(4): 549-553.

[33] LU L, WANG J, BAI J W, et al. Synthesis, characterization and crystal structure of a 2D Cd(II) complex with a 4, 4'-diazenediyldiphthalic acid ligand[J]. Crystal Research and Technology, 2008, 43(12): 1327-1330.

[34] 刘 佳, 田进涛. 含不同基团偶氮苯化合物的合成及其光致异构化性质[J]. 合成化学, 2016, 24(4): 338-341+345.

[35] 晋彩琴. 偶氮苯羧酸化合物及其配合物理的合成与性能研究[D]. 西安: 西安理工大学, 2017.

[36] 鄢剑锋. 具氧化还原活性中心偶氮苯共轭分子的合成与光化学性质研究[D]. 福州: 福州大学, 2015.

[37] UMEMURA J, HISHIRO Y, KAWAI T, et al. Orientation evaluation of polyion complex Langmuir-Blodgett films by Fourier transform IR transmission and reflection-absorption spectroscopy[J]. Thin Solid Films, 1989, 178(1/2): 281-287.

[38] XU X, LIU C, XU S, et al. Study on the photoinduced-color changing about novel azobenzocrown ether derivatives 16ABC-OH and 16ABC-NH2 in water solution and Langmuir-Blodgett film[J]. Spectroscopy Spectral Analysis, 2000, 20(3): 415-534.

[39] 王罗新, 王晓工. 偶氮苯顺反异构化机理研究进展[J]. 化学通报, 2008, 71(4): 243-248.

[40] MAHATA P, MADRAS G, NATARAJAN S. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds[J]. The Journal of Physical Chemistry B, 2006, 110(28): 13759-13768.

[41] GHEDINI M, PUCCI D, CRISPINI A, et al. Dinuclear cyclopalladated azobenzene complexes: a comparative study on model compounds for organometallic liquid-crystalline materials[J]. Applied Organometallic Chemistry, 1999, 13(8): 565-581.

[42] LI F F, MA J F, SONG S Y, et al. Influence of neutral ligands on the structures of silver(I) sulfonates[J]. Inorganic Chemistry, 2005, 44(25): 9374-9383.

余中, 王玉雪, 代平, 韩晶, 王琰, 张绪. 基于4,4’-偶氮苯二甲酸的金属-有机框架合成及其荧光性质[J]. 人工晶体学报, 2023, 52(11): 2024. YU Zhong, WANG Yuxue, DAI Ping, HAN Jing, WANG Yan, ZHANG Xu. Synthesis and Fluorescent Properties of Metal-Organic Frameworks Based on 4,4’-Azobenzoic Acid[J]. Journal of Synthetic Crystals, 2023, 52(11): 2024.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!