光学学报, 2023, 43 (22): 2213001, 网络出版: 2023-11-20   

基于级联微环的微波光子滤波器带宽压缩

Bandwidth Compression of Microwave Photonic Filter Based on Cascaded Micro Rings
作者单位
1 东南大学先进光子学中心,江苏 南京 210096
2 东南大学电子科学与工程学院,江苏 南京 210096
摘要
基于微环谐振腔的微波光子滤波器(MPF)以其优异的可调谐特性得到了广泛关注和研究,但通常微环的带宽决定了所实现的MPF带宽,进而限制了滤波分辨率。本文提出并验证了一种基于三微环级联的MPF,相比单个微环,通过多引入两个微环谐振腔,使光载波与±1阶光边带拍频后的相位差谱从0~π变得更陡峭,从而实现了MPF带宽压缩。实验结果表明,本文提出的基于级联三微环的MPF在不提升微环本身Q值的前提下,相比基于单微环的MPF,滤波带宽压缩了约69%,3 dB衰减斜率提高了约3.6倍,实现了更精细的滤波;另外,该MPF还实现了11.5~20.3 GHz的频率连续调谐和187.1~1597.0 MHz的带宽连续调谐。
Abstract
Objective

Microwave photonic technology can process radio frequency (RF) signals in the optical domain. Compared with the traditional electrical processing methods, it has the advantages of low loss, broadband, good tunability, and sound anti-electromagnetic interference. As an important component for various applications such as radar, communications, and radio astronomy, microwave photonic filter (MPF) has become a research hotspot in microwave photonics in recent years. With the development of photonic integration technology, integrated MPFs have attracted research attention. Recently, microring resonators (MRRs) have been widely employed in MPFs thanks to their compact sizes and good adjustability. The MPF should have a narrow RF bandwidth to achieve precise RF resolution. As known, typically the RF bandwidth of the MPF based on MRR is the same as the optical bandwidth of the MRR when crosstalk is ignored. Therefore, reducing the optical bandwidth of the MRR by improving its quality factor (Q factor) is the most direct and effective way to reduce the MPF bandwidth. However, the MRR loss should be reduced to increase the Q factor, which is difficult to achieve since the scattering loss caused by the waveguide sidewall roughness is usually unavoidable. Under typical silicon-on-insulator (SOI) fabrication processes, optical bandwidth of about GHz for MRR can be obtained, which cannot meet the requirements of high-precision MPF with sub-GHz frequency resolving capability. We propose and demonstrate an MPF based on three cascaded MRRs and phase modulation. With this configuration, the 3-dB RF bandwidth of the MPF can be well compressed compared with the 3-dB optical bandwidth of the MRR, and flexible tunability of the MPF is achieved.

Methods

We put forward an MPF based on cascaded three MRRs and phase modulation. By introducing two more MRRs, the phase differences between the optical carrier and the ±1 order optical sidebands can be changed much steeper from 0-π compared with the MPF constructed by a single MRR. As a result, the photocurrent obtained by beating the optical carrier and the ±1 order optical sidebands changes abruptly from constructive interference to destructive interference. Thus the slopes on both sides of the filter peak of the MPF response can be increased to achieve RF bandwidth compressing compared with that of the MPF based on a single MRR. Simulation and experimental results show that the MPF based on cascaded three MRRs and phase modulation can compress the RF bandwidth.

Results and Discussions

We simulate the phase spectra of the optical carrier and the ±1 order optical sidebands of the MPF based on cascaded three MRRs and the MPF based on single MRR. The results show that the phase difference between 8.9-9.5 GHz for the MPF based on cascaded three MRRs is 1.12π, while the phase difference for the MPF based on single MRR is only 0.83π, which means much steeper phase changing from 0-π is achieved by the MPF based on three MRRs compared with the MPF based on single MRR [Fig. 4(b)]. Additionally, the simulation results show that compared with the MPF based on single MRR, the RF bandwidth of the MPF based on cascaded three MRRs is compressed by about 52%, and the 3-dB attenuation slope is increased about 1.1 times than that of the MPF based on single MRR [Fig. 4(d)] without enhancing the Q factor . The experimental results show that the MPF based on cascaded three MRRs can compress the RF bandwidth by about 69%, and the 3-dB attenuation slope is increased about 3.6 times than that of the MPF based on single MRR (Fig. 9). Meanwhile, continuous frequency tuning in the range of 11.5-20.3 GHz [Fig. 10(b)] and RF bandwidth tuning in the range of 187.1-1597.0 MHz [Fig. 10(a)] are achieved.

Conclusions

We propose and demonstrate a bandwidth compressing method for the MPF based on cascaded three MRRs and phase modulation. By adopting this method, the phase differences between the optical carrier and the ±1 order optical sidebands can be changed much steeper from 0-π than that of the MPF based on single MRR to compress the RF bandwidth of the MPF. Compared with the MPF based on single MRR, the RF bandwidth of the MPF based on cascaded three MRRs is compressed by about 69% without increasing the Q factor. Additionally, the 3-dB attenuation slope is increased about 3.6 times than that of the MPF based on single MRR. Continuous frequency tuning in the range of 11.5-20.3 GHz and RF bandwidth tuning in the range of 187.1-1597.0 MHz are achieved. Furthermore, the proposed method can achieve an even narrower RF bandwidth if an MRR with a higher Q factor is adopted. Meanwhile, the proposed MPF has the potential to be fully integrated into a chip and could find extensive utilization in microwave photonic signal processing systems.

1 引言

微波光子技术可以实现在光域上处理微波信号,和传统的电处理方式相比,微波光子技术具有可调谐性好和抗电磁干扰能力强等优点1。微波光子滤波器(MPF)作为微波光子技术的一项重要组成部分,在雷达、通信和射电天文领域有广泛的应用价值2,是近年来研究的热点之一。目前,基于离散光学器件的MPF主要有基于受激布里渊散射的MPF3、基于光子晶体的MPF4、基于光纤光栅的MPF5、基于光纤环的MPF6等,这些采用分立原件的滤波器都有体积大、不易集成、缺乏可调节性等缺点。随着集成工艺的发展,MPF也逐渐集成化,目前集成的MPF中的核心光学滤波器主要包括马赫-曾德尔干涉仪(MZI)7、微盘谐振腔(MDR)8、微环谐振腔(MRR)等9-14。其中,MRR因为具有尺寸小和可调性好等优点被广泛应用于集成光学滤波器领域,基于MRR的MPF也成为研究者们关注的对象。为了实现更精细的滤波,要求MPF有更窄的滤波带宽,通常在忽略相位串扰的条件下,MPF的滤波带宽与其使用的光滤波器带宽相同。因此,提升光滤波器的品质因子Q值成为减小MPF滤波带宽最直接有效的方法。但是,要提升MRR的Q值,需要减小MRR的损耗,而由于微纳加工工艺所导致的波导侧壁粗糙度引起的散射损耗通常无法避免。因此,通常绝缘体上的硅(SOI)MRR滤波器的带宽都在GHz量级,无法满足高精度的微波光子滤波。2018年,Qiu等15提出了使用多模跑道型微环代替单模微环,减少了侧壁损耗,提升了微环的Q值。2020年,Zhang等16使用多模欧拉弯曲跑道型微环,进一步减少了微环的弯曲损耗,提升了微环的Q值,但是该微环的耦合区需要进行特殊的设计,对工艺误差的容忍度较小。2022年,Ji等17对MRR的结构进行特殊设计,提升了微环的Q值。上述三个方案都是从减少侧壁损耗出发提升了微环的Q值。就目前已有的报道,多微环级联MPF主要应用于增大带宽,例如在2019年,Xu等18提出了基于多微环级联的MPF,通过多个微环级联且优化每个微环的中心滤波频率,可以实现宽带宽的微波光子滤波。2022年,Liu等1提出了基于多模微环级联的MPF,使用多模微环提升单个微环的Q值,通过级联且优化每个微环的中心频率,可以实现更宽范围的带宽调谐。但是,对于使用级联微环进行MPF带宽压缩的应用,据本文作者所知还没有报道。

基于此,本文提出了一种基于级联三微环的MPF,有效提升了光载波与±1阶边带拍频所得光电流信号的相位差从0~π变化的陡峭度,进而增大了微波光子滤波中心频率两侧的斜率,实现了MPF带宽压缩。理论仿真结果表明,在不提升微环本身Q值的前提下,相比单微环构建的MPF,基于级联三微环的MPF将带宽压缩了约52%,3 dB衰减斜率提高了约1.1倍。实验结果表明,相比单微环MPF,基于级联三微环的MPF将带宽压缩了约69%,3 dB衰减斜率提高了约3.6倍。另外,该MPF还实现了11.5~20.3 GHz的频率连续调谐和187.1~1597.0 MHz的带宽连续调谐。

2 工作原理

基于单微环与级联三微环的MPF链路如图1所示。图中,相位调制器(PM)将微波信号调制到由可调半导体激光器(TSL)产生的光载波上。在小信号条件下,光载波被微波信号调制后,在频域上产生幅度相等、相位相反的±1阶边带信号。在如图1(a)所示的基于单微环的MPF链路中,+1阶边带经过MRR滤波,滤波中心频率与光载波的频率间隔为f,光载波与经滤波后的±1阶边带在光电探测器(PD)上拍频,得到单微环MPF频谱响应。在如图1(b)所示的级联三微环MPF链路中,+1阶边带经过微环MRR1滤波,且滤波中心频率与光载波的频率间隔为f;-1阶边带经滤波频率一致的微环MRR2、MRR3滤波,且滤波中心频率与光载波的频率间隔也为f。最后,光载波与经滤波后的±1阶边带在光电探测器上拍频,得到微波光子滤波频谱响应。

图 1. MPF原理图。(a)基于单微环的MPF;(b)基于级联三微环的MPF

Fig. 1. Schematic diagram of microwave photonic filter (MPF). (a) MPF based on single microring; (b) MPF based on cascaded three microrings

下载图片 查看所有图片

对于单微环MPF而言,光载波与±1阶边带拍频所得电流信号在滤波频率处满足相长干涉条件,而在远离滤波中心频率处由于MRR残余相位的原因,近似满足相消干涉条件,基于此可以获得带通型滤波响应。为了获得更窄带宽的滤波频谱,本文通过使光载波与±1阶边带拍频所得电流信号的相位差在0~π变化更陡峭,进而增大微波光子滤波中心频率两侧的斜率,如图1(b)所示,从而实现MPF带宽压缩。除此之外,如图2(a)所示,通过同时调整MRR1~MRR3的滤波频率,且始终保证±1阶边带滤波中心频率关于光载波对称,可以实现对MPF滤波中心频率的调谐;如图2(b)所示,通过调节MRR2与MRR3的滤波频率,使在-1阶边带滤波的MRR2与MRR3的中心频率分开,可以实现对该MPF的带宽调谐。

图 2. MPF滤波中心频率调谐和MPF带宽调谐。(a)频率调谐原理图;(b)带宽调谐原理图

Fig. 2. Frequency tuning of MPF filtering center and bandwidth tuning of MPF. (a) Schematic diagram of frequency tuning; (b) schematic diagram of bandwidth tuning

下载图片 查看所有图片

3 数值仿真与分析

根据后面的实验结果,在仿真中,设置MRR环长L=3.5 mm,采用双条形氮化硅波导,其截面图如图3(a)所示,氮化硅波导芯层宽度W和波导高度h分别为1.2 μm和170 nm,波导间距gap=500 nm,二氧化硅层的厚度H都为8 μm。单个MRR腔长为3.5 mm,弯曲波导半径为125 μm,MZI耦合器臂长为400 μm,加热电极heater1~heater4的长度为1.2 mm,heater5~heater8的长度为400 μm。采用Lumerical公司的MODE软件仿真得到,该氮化硅波导在通信波长1550 nm处的TE基模模式的有效折射率为neff≈1.756。

图 3. 波导及MRR的结构。(a)双条形氮化硅波导截面图;(b)全通型MRR示意图;(c)级联三微环滤波器示意图

Fig. 3. Structures of waveguide and microring resonator (MRR). (a) Cross section of double stripe silicon nitride waveguide; (b) schematic diagram of all-pass MRR; (c) schematic diagram of cascaded three microring filter

下载图片 查看所有图片

采用传输矩阵法可以得到如图3(b)所示的全通型MRR的传递函数为

Hsinglering=t-aexp jφ+Δφ1-atexp jφ+Δφ

式中:a为光绕环一周的振幅传输因子;t为直波导的振幅透射系数,在不考虑耦合损耗的前提下,满足t2+k2=1,其中k为直波导与微环的振幅耦合系数;Δφ为通过加热电极(heater1)引入的相位改变;φ为光绕微环一周的相位,可以表示为

φ=2πneffLλ

式中:L为微环环长;neff为波导模式有效折射率;λ为入射光波长。为了避免工艺误差对微环耦合系数的影响,所有微环的耦合区都是由两个耦合器构成热调谐MZI,如图3所示。可以实现微环耦合系数的连续调谐,有效保证三级联微环中每个微环的耦合系数能与单微环相同,从而去除微环Q值对带宽的影响,进而对单微环和三微环构建的MPF带宽进行公平对比。

后文实验中使用的级联三微环MRRs结构如图3(c)所示。该MRR的耦合区是将MZI可调耦合器的两个端口链接,通过heater6~heater8来调整MRR的振幅透射系数,进而控制微环的消光比和耦合状态。位于MRR上的heater2~heater4可以控制MRR的谐振波长。假设三个微环R1、R2和R3的振幅透射系数分别为t1t2t3。此级联三微环MPF的传递函数表示为

Hthreerings=t1-aexp jφ+dφ11-at1exp jφ+dφ1t2-aexp jφ+dφ21-at2exp jφ+dφ2t3-aexp jφ+dφ31-at3exp jφ+dφ3

式中,dφ1、dφ2和dφ3分别表示通过heater2、heater3和heater4加热引入的相位改变量。

在MPF链路中,光载波经相位调制后的光场可以表示为

Eout=Ecexp jφcJ0(m)exp jωct+J1(m)exp j(ωc+ωf)t-J1(m)exp j(ωc-ωf)t

式中:Ec表示入射光载波的振幅;ωc表示光载波的角频率;φc表示光载波的初相位;ωf表示微波信号的角频率;Jim)表示第i阶贝塞尔函数,其中,m为调制系数,表示为

m=VRFVππ

式中:VRF表示微波信号的电压;Vπ表示相位调制器的半波电压。由式(4)可以得到光载波与±1阶边带信号表示为

E0=EcJ0mexp jωct+φcE+1=EcJ1mexp j(ωct+ωft+φc)E-1=-EcJ1mexp j(ωct-ωft+φc)

经相位调制后的光载微波经级联微环后,可以得到光载波、±1阶边带信号分别为

E0=EcJ0mHthreeringsνcexp jωct+φcE+1=EcJ1mHthreeringsνc+νfexp j(ωct+ωft+φc)E-1=-EcJ1mHthreeringsνc-νfexp j(ωct-ωft+φc)

光载波与±1阶边带经光电探测器拍频后的光电流有以下关系:

i0,+1tE0*E+1+E0E+1*i0,-1tE0*E-1+E0E-1*

其相位可以表示为

φa=arg i0,-1tφb=arg i0,+1t

式中,φaφb分别为光载波与±1阶边带拍频所得光电流信号的相位。最后,输出的光电流信号可以表示为

it=i0,+1t+i0,-1t

根据后面实验中级联三微环光子滤波器透射光谱,结合式(3),对振幅透射系数t和振幅传输因子a参数拟合,得到MRR的振幅传输因子a=0.9849,三个MRR的振幅透射系数分别为t1=0.9438、t2=t3=0.9819。当光载波波长为1550 nm、微波信号频率范围为5~20 GHz时,假设微波光子链路损耗为14 dB,输入光功率为13 dBm,光电探测器响应度为0.75。通过改变式(3)中的dφ1、dφ2和dφ3,使MRR2与MRR3的中心滤波频率相同,且始终保证±1阶边带滤波中心频率关于光载波对称;由式(10)可得MPF的射频响应谱如图4(a)所示,其滤波中心频率为8.9 GHz,在8.3~9.5 GHz内为射频响应压窄区域。为了解释带宽压缩的原理与射频响应不对称的原因,在图中划分了三个区域(包括低频区①、中频区②和高频区③)。

图 4. 基于级联三微环的MPF仿真结果。(a)射频响应图:① 低频带(3.0~8.3 GHz);② 中频带(8.3~9.5 GHz);③ 高频带(9.5~20.0 GHz);(b)光载波与±1阶边带拍频所得光电流相位差图;(c)光载波与±1阶边带拍频所得光电流幅度差图;(d)单微环MPF与级联三微环MPF的射频响应对比图

Fig. 4. Simulation results of MPF based on cascaded three microrings. (a) Radio frequency (RF) response image: ① Low frequency band (3.0~8.3 GHz); ② intermediate frequency band (8.3~9.5 GHz); ③ high frequency band (9.5~20.0 GHz); (b) phase differences of photocurrents from beating between optical carrier and ±1 order sidebands; (c) amplitude differences of photocurrents from beating between optical carrier and ±1 order sidebands; (d) comparison between RF responses of MPF based on single microring and cascaded three microrings

下载图片 查看所有图片

式(9)作其相位差图,所得结果如图4(b)所示,可以看出,级联三微环MPF在8.9~9.5 GHz之间的相位差谱变化值为1.12π,而单微环MPF变化值只有0.83π,即级联三微环MPF的相位差谱在8.9~9.5 GHz之间变化更陡峭,使其相位差谱从0~π变得更陡峭,进而使光载波与±1阶边带拍频所得光电流信号从相长干涉到相消干涉变化更迅速,因此增大了射频响应滤波峰两侧斜率,实现了带宽压缩。

另外对于级联三微环MPF,光载波与±1阶边带拍频所得的光电流幅度如图4(c)所示,在高频区与低频区可以近似认为i0,+1=i0,-1。在这两个区域中,MPF的带外抑制比主要受MRR的残余相位影响。若φb-φa越靠近π的整数倍,拍频后的两个射频信号就能够更好地抵消。从图4(b)可以看出,当频率小于5 GHz时,φb-φa的值与-π相差仅有0.003π,因此在低频区光载波分别与±1阶边带拍频所得的光电流信号可以很好地消除。然而在高频区,φb-φa的值与π相差有0.033π,导致MPF在高频区带外抑制比较差。所以导致了MPF射频响应的不对称。

为验证级联三微环MPF的带宽压缩不受微环本身Q值影响,取振幅透射系数t=0.9819的单微环MPF,其射频响应谱如图4(d)中single microring线条所示,图4(d)中three microrings线条所示为级联三微环MPF的射频响应。可以看出,单微环和级联三微环所构成的MPF的半峰全宽(FWHM)分别为541.1 MHz和257.3 MHz,相较于单微环MPF的情况,级联三微环的MPF将带宽压缩了约52%。

为了衡量性能提升的效率,引入衰减斜率(slope)用来反应MPF射频响应曲线的下降速率,单位为dB/oct19。具体为曲线在某频率区间内的下降斜率,即衰减幅度与频率变化之间的比例。本文中采用3 dB衰减斜率来衡量MPF射频响应曲线的下降斜率,即计算振幅响应衰减一半对应的衰减斜率,其表达式为

k=3lb f3dBfc

式中:fc表示滤波中心频率;f3dB表示射频响应从最高点下降到一半时对应的频率,且满足f3dB>fc。由图4(d)可得,单微环和级联三微环所构成的MPF射频响应谱的3 dB衰减斜率分别为66.9 dB/oct和143.5 dB/oct。相较于单微环MPF的情况,级联三微环MPF的3 dB衰减斜率提高了约1.1倍。

4 实验结果

本文基于LioniX公司的低损耗双条形氮化硅光波导流片平台,制备了级联可调微环滤波器芯片,如图5所示,测得该芯片的插入损耗约为4.8 dB。

图 5. 已封装的芯片图

Fig. 5. Photo of packaged chip

下载图片 查看所有图片

搭建如图6所示的透射光谱测试链路,功率为0 dBm的激光由可调半导体激光器(Santec,TSL-710)发出,经过偏振控制器和级联MRR后进入多通道光功率计(Santec,MPM-210)进行功率检测。通过扫描波长即可实现芯片的透射光谱测试。

图 6. MRR透射光谱测试链路图

Fig. 6. Transmission spectra measurement setup for MRR

下载图片 查看所有图片

单个MRR的透射光谱如图7(a)所示,其FWHM为494 MHz。为保证本文提出的带宽压窄方法不是因为微环本身窄带宽而引起,所以通过控制heater6~heater8,使级联三微环滤波器中所有微环的FWHM都大于上述单微环光子滤波器,级联三微环的透射光谱如图7(b)所示。三个MRR中最窄的FWHM为497 MHz。通过调节heater3与heater4将MRR2滤波峰与MRR3滤波峰对准,获得如图7(c)所示的光谱。

图 7. 测试得到的透射光谱。(a)单微环透射光谱;(b)三微环透射光谱;(c)合并后的三微环透射光谱

Fig. 7. Measured transmission spectra. (a) Transmission spectra of single microring; (b) transmission spectra of cascaded three microrings; (c) transmission spectra of combined three microrings

下载图片 查看所有图片

之后,搭建如图8所示的MPF测试链路。功率为13 dBm的光载波由可调半导体激光器发出,经过偏振控制器1(PC1)后到相位调制器,当光载波被矢量网络分析仪(Agilent,N5242A,VNA)发出的微波信号调制后,会形成有相反相位的±1阶边带,光载波与±1阶边带经过偏振控制器2(PC2)后在级联微环光子滤波器上滤波,最后使用光电探测器获得光电流信号,该光电流信号被送到矢量网络分析仪(VNA)中,获得射频响应谱形。

图 8. 基于级联三微环的MPF测试链路图

Fig. 8. Experimental setup for characterizing MPF based on cascaded three microrings

下载图片 查看所有图片

基于该MPF测试链路,首先测试了上述基于单微环微的MPF的射频响应,如图9中single microring线条所示,其FWHM和3 dB衰减斜率分别为703.3 MHz和48.3 dB/oct。其次测试了基于级联三微环的MPF的射频响应,如图9中three microrings线条所示,其FWHM和3 dB衰减斜率分别为212.4 MHz和223.4 dB/oct。相较于单微环MPF,在不提升微环本身Q值的前提下,级联三微环MPF使带宽压缩了约69%,3 dB衰减斜率提高了约3.6倍。由于本文提出的滤波带宽压缩是基于微环对相位调制产生的两个边带进行幅/相调控实现的,因此相比单微环,级联三微环中额外的两个MRR的插损只会影响系统的射频增益,而对带宽压缩和衰减斜率没有影响。从图9中可以看出,由于本文在±1阶边带同时滤波,因此构建的微波光子带通滤波器的射频增益比单微环的低,可以通过在系统中使用掺铒光纤放大器(EDFA)进行增益补偿来改善。如果降低微环损耗,可以进一步减小单微环MPF的带宽,进而级联三微环MPF的带宽也将随之减小。同理,耦合系数越大,微环的Q值越小,所得到的级联三微环MPF的带宽也将随耦合系数的增大而增大。

图 9. 单微环MPF与级联三微环MPF的RF响应对比图

Fig. 9. Comparison of RF responses of MPFs based on single microring and cascaded three microrings

下载图片 查看所有图片

实验得到的射频响应与理论仿真结果趋势符合较好,但由于制备的微环自由光谱范围(FSR)较小,且实验中的单微环是将三级联微环中的两个微环的耦合系数调谐到1(即接近不谐振)来实现的。因此,图9中单微环构建的MPF在低频段的频率响应与图4(d)的差别可能是由微环的残余相位以及热串扰导致的。

为了表征本文方案提出的MPF的可调谐性,图10展示了通过调节heater2~heater4改变三个MRR的滤波频率,所实现的带宽调谐功能和滤波中心频率调谐功能。如图10(a)所示,通过调节MRR2与MRR3的滤波频率,使得在-1阶边带滤波的MRR2与MRR3的中心频率分开,可以实现对该MPF的带宽调谐。如图10(b)所示,通过同时调节MRR1~MRR3的滤波频率,且始终保证±1阶边带滤波中心频率关于光载波对称,可以完成对MPF滤波中心频率的调谐。实验结果表明,级联三微环MPF可以实现187.1~1597.0 MHz的带宽连续调谐与11.5~20.3 GHz的中心频率连续调谐,由于该MPF的频率调谐范围为微环FSR的一半,因此其频率调谐范围随微环尺寸的减小而增大。带宽调谐主要是通过调谐单个MRR的中心滤波频率来实现,当调谐其中一个MRR的中心滤波频率,使其向短波长方向移动,所得到的射频响应在带宽展宽的同时,中心滤波频率也会向短波长方向移动。另一方面,本文采用三个级联的全通型MRR,每个全通型MRR输出谱形均为带阻。当MPF带宽减小时,三个MRR中心滤波频率重合,对应射频响应的中心滤波频率损耗较大,因此射频增益减小;相反,当MPF带宽增大时,三个MRR的中心滤波频率逐渐分开,因此射频增益变大。

图 10. 级联三微环MPF调谐特性测试结果。(a)带宽调谐;(b)频率调谐

Fig. 10. Measurement results of MPF based on cascaded three microrings. (a) Bandwidth tuning; (b) frequency tuning

下载图片 查看所有图片

5 结论

本文提出并验证了基于级联氮化硅三微环的MPF,通过多微环级联的方式,使光载波与±1阶光边带拍频后的相位差谱从0~π变得更陡峭,从而实现了对MPF的带宽压缩。相较于单微环MPF,本文提出的MPF在不提升微环本身Q值的前提下,将滤波带宽压缩了约69%,3 dB衰减斜率提高了约3.6倍。另外,该MPF还实现了11.5~20.3 GHz的滤波频率连续调谐和187.1~1597.0 MHz的滤波带宽连续调谐。若使用Q值更高的MRR,采用本文提出的方案可以得到更窄的滤波带宽,具有很好的应用前景。

参考文献

[1] Liu Y F, Chen Y, Wang L, et al. Tunable and reconfigurable microwave photonic bandpass filter based on cascaded silicon microring resonators[J]. Journal of Lightwave Technology, 2022, 40(14): 4655-4662.

[2] Yu B, Chen Y C, Pan J S, et al. Silica-microsphere-cavity-based microwave photonic Notch filter with ultra-narrow bandwidth and high peak rejection[J]. Optics Letters, 2019, 44(6): 1411-1414.

[3] 徐恩明, 李凡, 张祖兴, 等. 单双通带可切换的微波光子滤波器[J]. 光学学报, 2019, 39(5): 0506003.

    Xu E M, Li F, Zhang Z X, et al. Microwave photonic filter with switched single and dual passbands[J]. Acta Optica Sinica, 2019, 39(5): 0506003.

[4] Song Z X, Wang Y P, Cheng Y J. Demodulation of a polarization-maintaining photonic crystal fiber load sensor with high resolution using a microwave photonic filter[J]. Microwave and Optical Technology Letters, 2021, 63(6): 1612-1615.

[5] Fu H Y, Zhang W, Mou C B, et al. High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering[J]. IEEE Photonics Technology Letters, 2009, 21(8): 519-521.

[6] 张梓平, 牛晓晨, 黄杰, 等. 基于光纤环谐振腔的高性能微波光子滤波器[J]. 光学学报, 2020, 40(21): 2106001.

    Zhang Z P, Niu X C, Huang J, et al. High-performance microwave photonic filter based on fiber ring resonator[J]. Acta Optica Sinica, 2020, 40(21): 2106001.

[7] 赖明彬, 耿敏明, 谭伊璇, 等. 基于级联微环辅助Mach-Zehnder干涉仪的带宽可调谐光滤波器的设计[J]. 光学学报, 2023, 43(11): 1113003.

    Lai M B, Geng M M, Tan Y X, et al. Optical filter design based on cascaded double-ring-assisted Mach-Zehnder interferometers with bandwidth tuning capability[J]. Acta Optica Sinica, 2023, 43(11): 1113003.

[8] Deng H, Zhang W F, Yao J P. High-speed and high-resolution interrogation of a silicon photonic microdisk sensor based on microwave photonic filtering[J]. Journal of Lightwave Technology, 2018, 36(19): 4243-4249.

[9] Yang H M, Li J, Zheng P F, et al. A stopband and passband switchable microwave photonic filter based on integrated dual ring coupled Mach-Zehnder interferometer[J]. IEEE Photonics Journal, 2019, 11(4): 5502608.

[10] Chen Y, Fan Z Q, Lin Y, et al. A multiband microwave photonic filter based on a strongly coupled microring resonator with adjustable bandwidth[J]. IEEE Photonics Journal, 2023, 15(1): 5500206.

[11] Liu Y, Hotten J, Choudhary A, et al. All-optimized integrated RF photonic Notch filter[J]. Optics Letters, 2017, 42(22): 4631-4634.

[12] Zhuang L M. Flexible RF filter using a nonuniform SCISSOR[J]. Optics Letters, 2016, 41(6): 1118-1121.

[13] Liu X L, Yu Y A, Tang H T, et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection[J]. Optics Letters, 2018, 43(6): 1359-1362.

[14] Zhuang L M, Zhu C, Corcoran B, et al. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit[J]. Optics Express, 2016, 24(6): 5715-5727.

[15] Qiu H Q, Zhou F, Qie J R, et al. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator[J]. Journal of Lightwave Technology, 2018, 36(19): 4312-4318.

[16] Zhang L, Jie L L, Zhang M, et al. Ultrahigh-Q silicon racetrack resonators[J]. Photonics Research, 2020, 8(5): 684-689.

[17] Ji X C, Jang J K, Dave U D, et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs[J]. Laser & Photonics Reviews, 2021, 15(1): 2000353.

[18] Xu L, Hou J E, Tang H T, et al. Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth[J]. Photonics Research, 2019, 7(2): 110-115.

[19] Ma C S, Xu Y Z, Yan X, et al. Optimization and analysis of series-coupled microring resonator arrays[J]. Optics Communications, 2006, 262(1): 41-46.

王鹏飞, 程威, 苍昭, 田庄, 梁梓恩, 郭宸, 刘宇航, 恽斌峰. 基于级联微环的微波光子滤波器带宽压缩[J]. 光学学报, 2023, 43(22): 2213001. Pengfei Wang, Wei Cheng, Zhao Cang, Zhuang Tian, Zien Liang, Chen Guo, Yuhang Liu, Binfeng Yun. Bandwidth Compression of Microwave Photonic Filter Based on Cascaded Micro Rings[J]. Acta Optica Sinica, 2023, 43(22): 2213001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!