光谱学与光谱分析, 2023, 43 (3): 737, 网络出版: 2023-04-07  

基于SG-CARS-IBP的圣女果可溶性固形物可见/近红外光谱无损检测

Non-Destructive Detection of Soluble Solids in Cherry Tomatoes by Visible/Near Infrared Spectroscopy Based on SG-CARS-IBP
作者单位
1 河南科技大学农业装备工程学院, 河南 洛阳 471003
2 机械装备先进制造河南省协同创新中心, 河南 洛阳 471003
3 江苏大学现代农业装备与技术教育部重点实验室, 江苏 镇江 212013
4 河南科技大学物理工程学院, 河南 洛阳 471023
摘要
圣女果可溶性固形物(SSC)含量对圣女果内部品质影响至关重要, 但基于高光谱成像及介电性质特征的SSC检测技术存在局限性, 且目前鲜见圣女果SSC无损检测模型。 为实现圣女果SSC的无损检测, 提出基于圣女果可见/近红外光谱特征的SCC预测模型构建, 及改进的BP神经网络算法研究, 以期解决圣女果内部品质的快速无损检测。 以圣女果为研究对象, 试验样本188个, 将其划分为训练集150个和测试集38个, 采用可见/近红外光谱采集系统获取350~1 000 nm范围内的圣女果表面反射强度, 经光谱校正得样本反射率, 为增强信噪比, 截取481.15~800.03 nm范围内的光谱波段作为有效波段进行分析。 通过对比三种预处理模型, 对有效波段进行SG平滑(Savitzky-Golay Smoothing)预处理, 建立BP神经网络预测模型, 测试集决定系数(R2)和均方根误差(RMSE)分别为0.578 5和0.563 9; 在此基础上, 对BP神经网络的网络结构进行改进, 寻求BP神经网络最优预测结构, 计算输出层与期望值间误差, 调整网络结构参数, 将隐含层学习率和神经元个数分别设置为0.01和5, 建立改进的BP神经网络模型(SG-IBP), 测试集R2和RMSE分别为0.981 2和0.102 3; 通过竞争自适应重加权采样算法(CARS)筛选出18个特征波段, 测试集R2和RMSE分别为0.997 8和0.047 9, 同时检测速度显著提升。 研究结果表明: 经过改进的BP神经网络模型性能明显提高, 通过CARS提取特征波段后, 测试集R2提高了0.419 3, RMSE降低了0.516, 检测速度明显提升。 采用CARS提取特征波段的改进BP神经网络模型(SG-CARS-IBP)具有明显的优越性, SG-CARS-IBP模型较为适合圣女果SSC无损检测研究。 该研究可为圣女果SCC的高效无损检测提供参考。
Abstract
The content of soluble solids (SSC) plays an essential role in the internal quality of cherry tomatoes. However, SSC detection has some problems based on hyperspectral imaging and dielectric properties. There are few SSC non-destructive testing models for cherry tomatoes currently. Therefore, in order to realize the non-destructive detection of SSC in cherry tomatoes, a prediction model of internal quality based on the spectral characteristics of cherry tomatoes and an improved BP neural network algorithm were proposed to solve the problem of rapid non-destructive detection of cherry tomatoes’ internal quality. In this study, cherry tomatoes were selected as the research object, and there were 188 test samples divided into a training set of 150 and a testing set of 38. The cherry tomatoes’ reflective intensity in 350~1 000 nm was obtained using the visible/near-infrared spectral acquisition system, and corrected sample reflectivity was obtained and analyzed. The practical information of the cherry tomatoes’ spectral in 481.15~800.03 nm was intercepted to enhance the signal-to-noise ratio. A BP neural network prediction model was established by comparing the effective wavelengths treated by Savitzky-Golay smoothing (SG). The coefficient of determination (R2) and root mean square error (RMSE) for the test set were 0.578 5 and 0.563 9. On this basis, the network structure of the BP neural network was improved to seek the optimal prediction structure of the BP neural network. The error between the output layer and the expected value was calculated. The network structure parameters were adjusted, and the learning rate and the number of neurons were set to 0.01 and 5 to establish BP neural network model (SG-IBP). The R2 and RMSE of the test set were 0.981 2 and 0.102 3. While the R2 and RMSE of the test set were 0.997 8 and 0.047 9, with 18 feature lengths screened by the competitive adaptive reweighted sampling algorithm (CARS). Meanwhile, the speed was greatly improved. The results showed that the performance of the improved BP neural network model was significantly improved. After feature lengths were extracted by CARS, R2 of the test set was increased by 0.419 3, and RMSE was reduced by 0.516.The speed was also significantly improved. Therefore, the improved BP neural network model, which used CARS to extract characteristic lengths (SG-CARS-IBP), had apparent advantages, and the SG-CARS-IBP model was more suitable for studying cherry tomatoes’ SSC non-destructive detection. This study can provide a reference for efficient non-destructive detection of cherry tomatoes.
参考文献

[1] FENG Yan, LI Chao-ping, ZHU Long-ying, et al(冯 岩, 李朝平, 朱龙英, 等). Molecular Plant Breeding(分子植物育种), 2022, 20(15): 5158.

[2] TIAN Hua, WANG Jin-ping, WANG Yuan(田 华, 汪金萍, 王 远). Food Research and Development(食品研究与开发), 2018, 39(11): 204.

[3] YANG Sheng-bao, TANG Ya-ping, YANG Tao, et al(杨生保, 唐亚萍, 杨 涛, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2017, 33(18): 285.

[4] JIANG Feng-li, SHEN Dian-zhao, YANG Lei, et al(姜凤利, 沈殿昭, 杨 磊, 等). Food Science(食品科学), 2022, 43(22): 353.

[5] Zhang D, Xu Y, Huang W, et al. Infrared Physics & Technology, 2019, 98: 297.

[6] SHEN Ya-qi, LI Song-lin, HE Jie, et al(申亚其, 李松林, 何 杰, 等). Forestry Machinery & Woodworking Equipment(林业机械与木工设备), 2021, 49(3): 4.

[7] LIU Yan, ZHOU Xin-qi, YU Xiao-feng, et al(刘 妍, 周新奇, 俞晓峰, 等). Journal of Zhejiang University·Agric. & Life Sci.(浙江大学学报·农业与生命科学版), 2020, 46(1): 27.

[8] WANG Ruo-lin, WANG Dong, REN Xiao-lin, et al(王若琳, 王 栋, 任小林, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2018, 34(5): 129.

[9] TANG Yu-rong, ZHANG Hong, CAO Xin-xin, et al(唐玉荣, 张 宏, 曹昕昕, 等). Journal of Henan Agricultural Sciences(河南农业科学), 2017, 46(3): 148.

[10] Mishra P, Woltering E, Brouwer B, et al. Postharvest Biology and Technology, 2021, 171: 1.

[11] Nordey T, Joas J, Davrieux F, et al. Scientia Horticulturae, 2017, 216: 51.

[12] XU Sai, LU Hua-zhong, WANG Xu, et al(徐 赛, 陆华忠, 王 旭, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2021, 37(21): 287.

[13] XU Xin, MA Zhao-wu, XIONG Shu-ping, et al(许 鑫, 马兆务, 熊淑萍, 等). Journal of Agricultural Science and Technology(中国农业科技导报), 2022, 24(2): 136.

[14] WANG Nai-xiao, WANG Xi-lin, TAN Xin-ran, et al(王乃啸, 王希林, 覃歆然, 等). Proceedings of the CSEE(中国电机工程学报), 2020, 40(4): 1378.

[15] DING Zhen, CHANG Bo-shen(丁 震, 常博深). Industry and Mine Automation (工矿自动化), 2021, 47(12): 93.

张伏, 曹炜桦, 崔夏华, 王新月, 付三玲, 张亚坤. 基于SG-CARS-IBP的圣女果可溶性固形物可见/近红外光谱无损检测[J]. 光谱学与光谱分析, 2023, 43(3): 737. ZHANG Fu, CAO Wei-hua, CUI Xia-hua, WANG Xin-yue, FU San-ling, ZHANG Ya-kun. Non-Destructive Detection of Soluble Solids in Cherry Tomatoes by Visible/Near Infrared Spectroscopy Based on SG-CARS-IBP[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 737.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!